pip install -r requirements.txt
- pytorch >= 1.0
- loguru
cifar10-gist.mat password: umb6
cifar-10_alexnet.t password: f1b7
nus-wide-tc21_alexnet.t password: vfeu
imagenet-tc100_alexnet.t password: 6w5i
usage: run.py [-h] [--dataset DATASET] [--root ROOT]
[--code-length CODE_LENGTH] [--num-samples NUM_SAMPLES]
[--max-iter MAX_ITER] [--beta BETA] [--lamda LAMDA]
[--topk TOPK]
LFH_PyTorch
optional arguments:
-h, --help show this help message and exit
--dataset DATASET Dataset name.
--root ROOT Path of dataset
--code-length CODE_LENGTH
Binary hash code length.(default:
8,16,24,32,48,64,96,128)
--num-samples NUM_SAMPLES
Number of samples.(default: 64)
--max-iter MAX_ITER Number of iterations.(default: 50)
--beta BETA Hyper-parameter.(default: 30)
--lamda LAMDA Hyper-parameter.(default: 1)
--topk TOPK Calculate top k data map.(default: all)
cifar10-gist dataset. Gist features, 1000 query images, 5000 training images. beta = 30, lamda = 1.
cifar-10-alexnet dataset. Alexnet features, 1000 query images, 5000 training images. beta=1, lamda = 50.
nus-wide-tc21-alexnet dataset. Alexnet features, top 21 classes, 2100 query images, 10500 training images. beta = 1, lamda = 50.
imagenet-tc100-alexnet dataset. Alexnet features, top 100 classes, 5000 query images, 10000 training images. beta = 10, lamda = 40.
Bits | 8 | 16 | 24 | 32 | 48 | 64 | 96 | 128 |
---|---|---|---|---|---|---|---|---|
cifar10-gist@ALL | 0.2339 | 0.2866 | 0.2968 | 0.3258 | 0.3339 | 0.3285 | 0.3419 | 0.3551 |
cifar10-alexnet@ALL | 0.2994 | 0.3892 | 0.4032 | 0.4047 | 0.4302 | 0.4324 | 0.4365 | 0.4480 |
nus-wide-tc21-alexnet@5000 | 0.6396 | 0.6615 | 0.6903 | 0.7131 | 0.7321 | 0.7423 | 0.7625 | 0.7619 |
imagenet-tc100-alexnet@1000 | 0.0943 | 0.1870 | 0.2999 | 0.3738 | 0.4327 | 0.4754 | 0.5199 | 0.5344 |