TICO (Torch IR to Circle ONE) is a python library for converting Pytorch modules into a circle model that is a lightweight and efficient representation in ONE designed for optimized on-device neural network inference.
- Prerequisites
- Python 3.10
- one-compiler nightly
- This project depends on ONE Compiler, and it uses nightly features that are not yet available in the official release. Until one-compiler 1.30.0 is released, you must use a prebuilt nighlty version of ONE Compiler.
We highly recommend to use a virtual env, e.g., conda.
-
Clone this repo
-
Build python package
./ccex build
This will generate build
and dist
directories in the root directory.
- Install generated package
./ccex install
Available options
--dist
To install the package from .whl (without this option, TICO is installed in an editable mode)--torch_ver <torch version>
To install a specific torch version (default: 2.6).- Available : 2.5, 2.6, nightly
- Now you can convert a torch module to a
.circle
.
This tutorial explains how you can use TICO to generate a circle model from a torch module.
Let's assume we have a torch module.
import tico
import torch
class AddModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
return x + y
NOTE TICO internally uses torch.export. Therefore, the torch module must be 'export'able. Please see this document if you have any trouble to export.
You can convert a torch module to a circle model with these steps.
torch_module = AddModule()
example_inputs = (torch.ones(4), torch.ones(4))
circle_model = tico.convert(torch_module, example_inputs)
circle_model.save('add.circle')
Compile with configuration
from test.modules.op.add import AddWithCausalMaskFolded
torch_module = AddWithCausalMaskFolded()
example_inputs = torch_module.get_example_inputs()
config = tico.CompileConfigV1()
config.legalize_causal_mask_value = True
circle_model = tico.convert(torch_module, example_inputs, config = config)
circle_model.save('add_causal_mask_m120.circle')
With legalize_causal_mask_value
option on, causal mask value is converted from
-inf to -120, creating a more quantization-friendly circle model with the cost of
slight accuracy drop.
The torch module can be exported and saved as .pt2
file (from PyTorch 2.1).
module = AddModule()
example_inputs = (torch.ones(4), torch.ones(4))
exported_program = torch.export.export(module, example_inputs)
torch.export.save(exported_program, 'add.pt2')
There are two ways to convert .pt2
file: python api, command line tool.
- Python API
circle_model = tico.convert_from_pt2('add.pt2')
circle_model.save('add.circle')
- Command Line Tool
pt2-to-circle -i add.pt2 -o add.circle
- Command Line Tool with configuration
pt2-to-circle -i add.pt2 -o add.circle -c config.yaml
# config.yaml
version: '1.0' # You must specify the config version.
legalize_causal_mask_value: True
After circle export, you can run the model directly in Python.
Note that you should install one-compiler package first.
The output types are numpy.ndarray.
torch_module = AddModule()
example_inputs = (torch.ones(4), torch.ones(4))
circle_model = tico.convert(torch_module, example_inputs)
circle_model(*example_inputs)
# numpy.ndarray([2., 2., 2., 2.], dtype=float32)
Run below commands to configure testing or formatting environment.
Refer to the dedicated section to have more fine-grained control.
$ ./ccex configure # to set up testing & formatting environment
$ ./ccex configure format # to set up only formatting environment
$ ./ccex configure test # to set up only testing environment
Available options
--torch_ver <torch version>
To install a specific torch family package(ex. torchvision) version (default: 2.6)- Available : '2.5', '2.6', 'nightly'
$ ./ccex configure # to set up testing & formatting environment with stable2.6.x version
$ ./ccex configure test # to set up only testing environment with stable 2.6.x version
$ ./ccex configure test --torch_ver 2.5 # to set up only testing environment with stable 2.5.x version
$ ./ccex configure test --torch_ver nightly # to set up only testing environment with nightly version
Run below commands to install requirements for testing.
NOTE TICO
will be installed in an editable mode.
./ccex configure test
# without editable install
./ccex configure test --dist
Run below commands to run the all unit tests.
NOTE Unit tests don't include model test.
./ccex test
# OR
./ccex test run-all-tests
To run subset of test.modules.*
,
Run ./ccex test -k <keyword>
For example, to run tests in specific sub-directory (op, net, ..)
# To run tests in specific sub-directory (op/, net/ ..)
./ccex test -k op
./ccex test -k net
# To run tests in one file (single/op/add, single/op/sub, ...)
./ccex test -k add
./ccex test -k sub
# To run SimpleAdd test in test/modules/single/op/add.py
./ccex test -k SimpleAdd
To see the full debug log, add -v
or TICO_LOG=4
.
TICO_LOG=4 ./ccex test -k add
# OR
./ccex test -v -k add
If you want to test them locally, you can do so by navigating to each model directory,
installing the dependencies listed in its requirements.txt
, and running the tests one by one.
$ pip install -r test/modules/model/<model_name>/requirements.txt
# Run test for a single model
$ ./ccex test -m <model_name>
For example, to run a single model
./ccex test -m InceptionV3
By default, ./ccex test
runs all modules with the circle-interpreter
engine.
You can override this and run tests using the onert
runtime instead.
Some ONERT features are only available in the nightly build until the next official release. To install the ONERT wheel from the issue comment:
- Download the
.whl
file linked in the relevant Github issue comment. - Install it with pip, for example:
pip install /path/to/onert_nightly.whl
Use the --runtime
(or -r
) flag to select a runtime:
# Run with the default circle-interpreter
./ccex test
# Run all tests with onert
./ccex test --runtime onert
# or
./ccex test -r onert
You can also set the CCEX_RUNTIME
environment variable:
# Temporarily override for one command
CCEX_RUNTIME=onert ./ccex test
# Persist in your shell session
export CCEX_RUNTIME=onert
./ccex test
- circle-interpreter (default): uses the Circle interpreter for inference.
- onert: uses the ONERT package for inference, useful when the Circle interpreter cannot run a given module.
Run below commands to install requirements for formatting.
./ccex configure format
./ccex format