forked from NVIDIA/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add ModelOpt transformer model pruning example for Llama models, defa…
…ult to llama3.1-8b-base (NVIDIA#10294) * Add ModelOpt transformer model pruning example for Llama3 model Signed-off-by: Shengliang Xu <[email protected]> * Apply isort and black reformatting Signed-off-by: shengliangxu <[email protected]> Signed-off-by: Shengliang Xu <[email protected]> * examples code is at wrong dir, move them Signed-off-by: Shengliang Xu <[email protected]> * changes as suggested in comment remove some logging and unused config code, update example model to llama3.1 Signed-off-by: Shengliang Xu <[email protected]> * Add pruning of hidden_size into example Signed-off-by: Shengliang Xu <[email protected]> * Apply isort and black reformatting Signed-off-by: shengliangxu <[email protected]> Signed-off-by: Shengliang Xu <[email protected]> * Update examples/nlp/language_modeling/conf/megatron_gpt_prune.yaml Signed-off-by: Keval Morabia <[email protected]> * Add pruning test to cicd-main.yml Signed-off-by: Keval Morabia <[email protected]> * Update cicd-main.yml Signed-off-by: Keval Morabia <[email protected]> * Update cicd-main.yml Signed-off-by: Keval Morabia <[email protected]> * Update cicd-main.yml Signed-off-by: Keval Morabia <[email protected]> * Update cicd-main.yml Signed-off-by: Keval Morabia <[email protected]> * Update cicd-main.yml Signed-off-by: Keval Morabia <[email protected]> --------- Signed-off-by: Shengliang Xu <[email protected]> Signed-off-by: shengliangxu <[email protected]> Signed-off-by: Keval Morabia <[email protected]> Co-authored-by: shengliangxu <[email protected]> Co-authored-by: Keval Morabia <[email protected]>
- Loading branch information
1 parent
fd5c978
commit efd0252
Showing
3 changed files
with
192 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
41 changes: 41 additions & 0 deletions
41
examples/nlp/language_modeling/conf/megatron_gpt_prune.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
inference: | ||
greedy: false # Whether or not to use sampling ; use greedy decoding otherwise | ||
top_k: 0 # The number of highest probability vocabulary tokens to keep for top-k-filtering. | ||
top_p: 0.9 # If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. | ||
temperature: 1.0 # sampling temperature | ||
add_BOS: true # add the bos token at the begining of the prompt | ||
tokens_to_generate: 30 # The minimum length of the sequence to be generated. | ||
all_probs: false # whether return the log prob for all the tokens in vocab | ||
repetition_penalty: 1.2 # The parameter for repetition penalty. 1.0 means no penalty. | ||
min_tokens_to_generate: 0 # The minimum length of the sequence to be generated. | ||
compute_logprob: false # a flag used to compute logprob of all the input text, a very special case of running inference, default False | ||
batch_size: 64 # batch size for inference | ||
max_context_length: 512 # max length of the context, input sequence will be truncated if it is longer than this | ||
|
||
trainer: | ||
devices: 1 | ||
num_nodes: 1 | ||
accelerator: gpu | ||
logger: false # logger provided by exp_manager | ||
precision: bf16 # 16, 32, or bf16 | ||
enable_checkpointing: false | ||
|
||
model: | ||
tensor_model_parallel_size: 1 # Pruning currently only supports tensor_model_parallel_size=1 | ||
pipeline_model_parallel_size: 1 | ||
restore_from_path: llama3.1-8b-base.nemo # Nemo file path | ||
|
||
## Activation Checkpoint | ||
activations_checkpoint_granularity: null # 'selective' or 'full' | ||
activations_checkpoint_method: null # 'uniform', 'block', not used with 'selective' | ||
|
||
prune: | ||
calib_dataset: cnn_dailymail # wikitext, cnn_dailymail, or a local dataset | ||
num_calib_size: 512 # number of samples used for calibration | ||
ffn_hidden_size: 3584 # ffn_hidden_size in the pruned model, ffn_hidden_size // 4 | ||
num_attention_heads: 8 # num_attention_heads in the pruned model, num_attention_heads // 4 | ||
num_query_groups: 4 # num_query_groups in the pruned model, num_query_groups // 2 | ||
hidden_size: 2048 # hidden_size in the pruned model, hidden_size // 2 | ||
|
||
export: | ||
save_path: llama3.1-8b-base-pruned.nemo # Path where the pruned model will be saved |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import modelopt.torch.prune as mtp | ||
import torch | ||
import torch.multiprocessing as mp | ||
from datasets import load_dataset | ||
from omegaconf import OmegaConf | ||
from pytorch_lightning.trainer.trainer import Trainer | ||
from tqdm import tqdm | ||
|
||
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel | ||
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy | ||
from nemo.core.config import hydra_runner | ||
from nemo.utils.model_utils import load_config | ||
|
||
mp.set_start_method("spawn", force=True) | ||
|
||
""" | ||
Nemo pruning example script. | ||
Please consult examples/nlp/language_modeling/conf/megatron_gpt_prune.yaml config on available pruning arguments, | ||
models supported as well as how to set up data and inference for calibration (with defaults recommended). | ||
Example usage: | ||
``` | ||
python examples/nlp/language_modeling/megatron_gpt_prune.py \ | ||
model.restore_from_path=llama3.1-8b-base.nemo \ | ||
model.tensor_model_parallel_size=1 \ | ||
model.pipeline_model_parallel_size=8 \ | ||
trainer.num_nodes=1 \ | ||
trainer.precision=bf16 \ | ||
trainer.devices=8 \ | ||
prune.ffn_hidden_size=3584 \ | ||
prune.num_attention_heads=8 \ | ||
prune.num_query_groups=4 \ | ||
prune.hidden_size=2048 \ | ||
export.save_path=llama3.1-8b-base-pruned.nemo | ||
``` | ||
where tensor_model_parallel_size must be 1 because of the current prune API limitation | ||
""" | ||
|
||
|
||
def get_calib_data_iter(data="cnn_dailymail", batch_size=64, calib_size=512, max_sequence_length=512): | ||
if data == "wikitext": | ||
dataset = load_dataset("wikitext", "wikitext-103-v1", split="train") | ||
text_column = "text" | ||
elif data == "cnn_dailymail": | ||
dataset = load_dataset("cnn_dailymail", name="3.0.0", split="train") | ||
text_column = "article" | ||
else: | ||
# Assume a local JSON dataset with a column named "text" | ||
dataset = load_dataset("json", data_files=data, split="train") | ||
text_column = "text" | ||
calib_size = max(min(len(dataset), calib_size), batch_size) | ||
for i in range(calib_size // batch_size): | ||
batch = dataset[i * batch_size : (i + 1) * batch_size][text_column] | ||
for j in range(len(batch)): | ||
batch[j] = batch[j][:max_sequence_length] | ||
yield batch | ||
|
||
|
||
@hydra_runner(config_path="conf", config_name="megatron_gpt_prune") | ||
def main(cfg) -> None: | ||
if not torch.cuda.is_available(): | ||
raise EnvironmentError("GPU is required for the pruning.") | ||
|
||
# Overwrite model config with the one from the model checkpoint and apply pruning modifications | ||
model_cfg = load_config(cfg.model.restore_from_path) | ||
model_cfg.update(cfg.model) | ||
model_cfg.name = "modelopt" # Use modelopt transformer spec for pruning | ||
|
||
assert cfg.model.tensor_model_parallel_size == 1, "Pruning currently only supports tensor_model_parallel_size=1" | ||
assert ( | ||
not hasattr(cfg.model, "sequence_parallel") or not cfg.model.sequence_parallel | ||
), "Pruning currently does not support sequence parallelism" | ||
|
||
trainer = Trainer(strategy=NLPDDPStrategy(), **cfg.trainer) | ||
model = MegatronGPTModel.restore_from( | ||
restore_path=cfg.model.restore_from_path, override_config_path=model_cfg, trainer=trainer | ||
) | ||
|
||
data_iter = get_calib_data_iter( | ||
cfg.prune.calib_dataset, | ||
cfg.inference.batch_size, | ||
cfg.prune.num_calib_size, | ||
cfg.inference.max_context_length, | ||
) | ||
dataloader = [data for data in data_iter] | ||
|
||
def forward_loop(model): | ||
# NOTE: Alternatively you can also use `model.forward_bwd_step(data_iter, forward_only=True)` | ||
# if your model is setup for training. | ||
model.set_inference_config(OmegaConf.to_container(cfg.inference)) | ||
for i, batch in enumerate(tqdm(dataloader, desc="Calibrating")): | ||
model.predict_step(batch, i) | ||
|
||
model_pruned, _ = mtp.prune( | ||
model, | ||
mode="mcore_gpt_minitron", | ||
constraints={ | ||
"export_config": { | ||
k: cfg.prune.get(k) | ||
for k in ["ffn_hidden_size", "num_attention_heads", "num_query_groups", "hidden_size"] | ||
if cfg.prune.get(k) is not None | ||
}, | ||
}, | ||
dummy_input=None, # Not used | ||
config={"forward_loop": forward_loop}, | ||
) | ||
|
||
model_pruned.save_to(cfg.export.save_path) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |