-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathQCD_report.smk
414 lines (339 loc) · 23.2 KB
/
QCD_report.smk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# Author: Dhatri Badri and Ali Pirani
#configfile: "config/config.yaml"
import pandas as pd
import os
import json
#import seaborn as sns
#import matplotlib.pyplot as plt
import numpy as np
import re
samples_df = pd.read_csv(config["samples"])
SAMPLE = list(samples_df['sample_id'])
PREFIX = config["prefix"]
SHORTREADS = list(samples_df['sample_id'])
if not os.path.exists("results/" + PREFIX):
os.system("mkdir %s" % "results/" + PREFIX)
# Organize reports directory
prefix = PREFIX
outdir = "results/%s" % prefix
report_dir = outdir + "/%s_Report" % prefix
report_script_dir = report_dir + "/scripts"
report_data_dir = report_dir + "/data"
report_multiqc_dir = report_dir + "/multiqc"
report_fig_dir = report_dir + "/fig"
isExist = os.path.exists(report_dir)
if not isExist:
os.makedirs(report_dir)
isExist = os.path.exists(report_script_dir)
if not isExist:
os.makedirs(report_script_dir)
isExist = os.path.exists(report_data_dir)
if not isExist:
os.makedirs(report_data_dir)
isExist = os.path.exists(report_multiqc_dir)
if not isExist:
os.makedirs(report_multiqc_dir)
isExist = os.path.exists(report_fig_dir)
if not isExist:
os.makedirs(report_fig_dir)
def coverage_report(prefix, outdir):
prefix = prefix.pop()
report_dir = str(outdir.pop()) + "/%s_Report" % prefix
# Generate Coverage report
final_coverage_file = "%s/data/%s_Final_Coverage.txt" % (report_dir, prefix)
f3=open(final_coverage_file, 'w+')
header = "Sample,Total_reads,Total_bp,MeanReadLength,Coverage\n"
f3.write(header)
for sampl in SAMPLE:
coverage_json = "results/%s/raw_coverage/%s/%s_coverage.json" % (prefix, sampl, sampl)
f = open(coverage_json)
data = json.load(f)
# data = json.loads(coverage_json)
f3.write("%s,%s,%s,%s,%s\n" % (sampl, data['qc_stats']['read_total'], data['qc_stats']['total_bp'], data['qc_stats']['read_mean'], data['qc_stats']['coverage']))
f3.close()
Coverage = pd.read_csv(final_coverage_file, sep=',', header=0)
Coverage = Coverage.replace(['_R1.fastq.gz'], '', regex=True)
#print ("Number of Samples in Coverage Report - %s" % len(Coverage))
#Coverage_NEG_CNTL = Coverage[Coverage.Sample.str.match('(.*NEG*)')]
#print ("Number of Negative Control samples %s" % len(Coverage_NEG_CNTL))
#print ("Number of Negative Control samples with > 100X coverage %s" % len(Coverage_NEG_CNTL[Coverage_NEG_CNTL['Coverage'] > 100]))
#Coverage_dist = Coverage.sort_values(by='Coverage',ascending=False).plot(x='Sample_name', y='Coverage', kind="barh", title="Estimated Genome Coverage", figsize=(20, 20), fontsize=40).get_figure()
#Coverage_dist.savefig('%s/%s_Coverage_distribution.pdf' % (report_dir, prefix))
#def kraken_report(prefix, outdir):
# prefix = prefix.pop()
# outdir = outdir.pop()
# Organize reports directory
# report_dir = str(outdir) + "/%s_Report" % prefix
# report_script_dir = str(outdir) + "/%s_Report/scripts" % prefix
# kraken_dir = str(outdir) + "/*/kraken"
# kraken_summary_script = open("%s/kraken_summary.sh" % report_script_dir, 'w+')
# kraken_summary_script.write("echo \"Sample,Percentage of reads for Species,# of reads for Species, Species\" > %s/data/%s_Kraken_report_final.csv\n" % (report_dir, prefix))
# kraken_summary_script.write("for i in results/%s/*/kraken/*_kraken_report.tsv; do grep -w 'S' $i | sort -k1n | tail -n1; done > /tmp/Kraken_report_temp.txt\n" % prefix)
# kraken_summary_script.write("ls -d results/%s/*/kraken/*_kraken_report.tsv | awk -F'/' '{print $NF}' | sed 's/_kraken_report.tsv//g' > %s/data/samplenames.txt\n" % (prefix, report_dir))
# kraken_summary_script.write("paste %s/data/samplenames.txt /tmp/Kraken_report_temp.txt > /tmp/Kraken_report_combined.txt\n" % (report_dir))
# kraken_summary_script.write("awk -F'\\t' 'BEGIN{OFS=\",\"};{print $1, $2, $3, $7}' /tmp/Kraken_report_combined.txt >> %s/data/%s_Kraken_report_final.csv\n" % (report_dir, prefix))
# kraken_summary_script.write("sed -i 's/\s//g' %s/data/%s_Kraken_report_final.csv\n" % (report_dir, prefix))
# kraken_summary_script.close()
# os.system("bash %s/kraken_summary.sh" % report_script_dir)
def skani_report(outdir, prefix):
prefix = prefix.pop()
outdir = "results/%s" % prefix
report_dir = str(outdir) + "/%s_Report" % prefix
report_data_dir = report_dir + "/data"
result_df = pd.DataFrame(columns=['Sample', 'ANI', 'Align_fraction_ref', 'Align_fraction_query', 'Ref_name', 'Species']) # Add 'Species' column
skani_dir = os.path.join(outdir, 'skani') # Navigate to skani directory
for sample_name in os.listdir(skani_dir): # Iterate over samples in the results/prefix/skani directory
sample_dir = os.path.join(skani_dir, sample_name)
if os.path.isdir(sample_dir): # Check if it's a directory
skani_file_path = os.path.join(sample_dir, f'{sample_name}_skani_output.txt') # Look for the skani output file
if os.path.exists(skani_file_path): # Check if the skani file exists
skani_file = pd.read_csv(skani_file_path, sep='\t| ,', skipinitialspace=True, header=0, engine='python') # Read the skani file
first_row_df = skani_file[['ANI', 'Align_fraction_ref', 'Align_fraction_query', 'Ref_name']].iloc[:1] # Extract the first row
if first_row_df.empty: # Check if the first row is empty
first_row_df = pd.DataFrame({
'Sample': [sample_name], # Add sample name
'ANI': ["NA"],
'Align_fraction_ref': ["NA"],
'Align_fraction_query': ["NA"],
'Ref_name': ["NA"],
'Species': ["NA"] # Add NAs for Species
})
else:
first_row_df.loc[:, 'Sample'] = sample_name # Add sample name
# Extract species using regex from Ref_name
first_row_df.loc[:, 'Species'] = first_row_df['Ref_name'].apply(
lambda x: re.search(r"[A-Za-z]+\s[A-Za-z]+", x).group(0) if pd.notnull(x) and re.search(r"[A-Za-z]+\s[A-Za-z]+", x) else "NAs"
)
first_row_df = first_row_df[['Sample', 'ANI', 'Align_fraction_ref', 'Align_fraction_query', 'Ref_name', 'Species']] # Reorder columns
result_df = pd.concat([result_df, first_row_df], ignore_index=True) # Concatenate to the result dataframe
result_file_path = os.path.join(report_data_dir, f'{prefix}_Skani_report_final.csv') # Save final result to CSV
result_df.to_csv(result_file_path, index=False)
def summary(prefix, outdir):
prefix = prefix.pop()
outdir = outdir.pop()
# Organize reports directory
report_dir = str(outdir) + "/%s_Report" % prefix
report_script_dir = str(outdir) + "/%s_Report/scripts" % prefix
Coverage = pd.read_csv("results/%s/%s_Report/data/%s_Final_Coverage.txt" % (prefix, prefix, prefix), sep=',', header=0)
Coverage.rename(columns = {'Sample_name':'Sample'}, inplace = True)
#kraken = pd.read_csv("results/%s/%s_Report/data/%s_Kraken_report_final.csv" % (prefix, prefix, prefix), sep=',', header=0)
mlst = pd.read_csv("results/%s/%s_Report/data/%s_MLST_results.csv" % (prefix, prefix, prefix), sep='\t', header=0)
#mlst = mlst.replace(['_contigs_l1000.fasta'], '', regex=True)
#mlst = mlst.replace(['results/.*/spades/'], '', regex=True)
#mlst = mlst.replace(['%s' % prefix], '', regex=True)
mlst['Sample'] = mlst['Sample'].replace(r'.*/spades/(.*?)/.*', r'\1', regex=True)
multiqc_fastqc_summary = pd.read_csv("results/%s/%s_Report/multiqc/%s_QC_report_data/multiqc_fastqc.txt" % (prefix, prefix, prefix), sep='\t', header=0)
patternDel = "_R2"
filter = multiqc_fastqc_summary['Sample'].str.contains(patternDel)
multiqc_fastqc_summary = multiqc_fastqc_summary[~filter]
aftertrim_filter = multiqc_fastqc_summary['Sample'].str.contains("_R1_trim_paired")
raw_multiqc_fastqc_summary = multiqc_fastqc_summary[~aftertrim_filter]
raw_multiqc_fastqc_summary = raw_multiqc_fastqc_summary.replace(['_R1'], '', regex=True)
aftertrim_multiqc_fastqc_summary = multiqc_fastqc_summary[aftertrim_filter]
aftertrim_multiqc_fastqc_summary = aftertrim_multiqc_fastqc_summary.replace(['_R1_trim_paired'], '', regex=True)
aftertrim_multiqc_fastqc_summary = aftertrim_multiqc_fastqc_summary.add_prefix('After_trim_')
aftertrim_multiqc_fastqc_summary.rename(columns = {'After_trim_Sample':'Sample'}, inplace = True)
multiqc_general_stats_summary = pd.read_csv("results/%s/%s_Report/multiqc/%s_QC_report_data/multiqc_general_stats.txt" % (prefix, prefix, prefix), sep='\t', header=0)
quast_filter = multiqc_general_stats_summary['Sample'].str.contains("_contigs_l1000")
multiqc_quast = multiqc_general_stats_summary[quast_filter]
multiqc_quast = multiqc_quast.replace(['_contigs_l1000'], '', regex=True)
if 'QUAST_mqc-generalstats-quast-N50' in multiqc_quast.columns and 'QUAST_mqc-generalstats-quast-Total_length' in multiqc_quast.columns:
multiqc_quast = multiqc_quast[["Sample", "QUAST_mqc-generalstats-quast-N50", "QUAST_mqc-generalstats-quast-Total_length"]]
multiqc_quast = multiqc_quast.rename(columns={"QUAST_mqc-generalstats-quast-N50": "N50", "QUAST_mqc-generalstats-quast-Total_length": "Total length"})
elif 'N50' in multiqc_quast.columns and 'Total length' in multiqc_quast.columns:
multiqc_quast = multiqc_quast[["Sample", "N50", "Total length"]]
#multiqc_quast = multiqc_quast[["Sample", "N50", "Total length"]]
def reformat_sample_name(name):
if '_S' in name:
# Replace underscores with dashes, but keep the format before the final _S
parts = name.rsplit('_S', 1)
if len(parts) == 2:
prefix = parts[0].replace('_', '-')
suffix = '_S' + parts[1]
return prefix + suffix
else:
return name
# Reformat the multiqc_quast df sample names
multiqc_quast['Sample'] = multiqc_quast['Sample'].apply(reformat_sample_name)
contig_distribution = pd.read_csv("results/%s/%s_Report/multiqc/%s_QC_report_data/mqc_quast_num_contigs_1.txt" % (prefix, prefix, prefix), sep='\t', header=0)
contig_distribution = contig_distribution.replace(['_contigs_l1000'], '', regex=True)
contig_distribution['Total # of contigs'] = contig_distribution.sum(axis=1, numeric_only=True)
contig_distribution = contig_distribution[['Sample', 'Total # of contigs']]
contig_distribution['Sample'] = contig_distribution['Sample'].apply(reformat_sample_name)
#read final skani output file
skani_summary = pd.read_csv("results/%s/%s_Report/data/%s_Skani_report_final.csv" % (prefix, prefix, prefix), sep=',', skipinitialspace=True, header=0, engine='python')
QC_summary_temp1 = pd.merge(Coverage, mlst, on=["Sample", "Sample"], how='left')
QC_summary_temp2 = QC_summary_temp1
QC_summary_temp3 = pd.merge(QC_summary_temp2, raw_multiqc_fastqc_summary, on=["Sample", "Sample"], how='left')
QC_summary_temp4 = pd.merge(QC_summary_temp3, aftertrim_multiqc_fastqc_summary, on=["Sample", "Sample"], how='left')
QC_summary_temp5 = pd.merge(QC_summary_temp4, multiqc_quast, on=["Sample", "Sample"], how='left')
QC_summary_temp6 = pd.merge(QC_summary_temp5, contig_distribution, on=["Sample", "Sample"], how='left')
#QC_summary_temp7 = QC_summary_temp6[["Sample" , "Total_reads" , "Total_bp" , "MeanReadLength" , "Coverage" , "Scheme" , "ST" , "PercentageofreadsforSpecies" , "#ofreadsforSpecies" , "Species" , "After_trim_per_base_sequence_content" , "After_trim_overrepresented_sequences" , "After_trim_%GC" , "After_trim_Total Bases" , "After_trim_Total Sequences" , "After_trim_median_sequence_length" , "After_trim_avg_sequence_length" , "After_trim_total_deduplicated_percentage" , "After_trim_Sequence length" , "After_trim_adapter_content" , "N50" , "Total length" , "Total # of contigs"]].copy() #.copy() to deal with SettingWithCopyWarning error
QC_summary_temp7 = QC_summary_temp6[["Sample" , "Total_reads" , "Total_bp" , "MeanReadLength" , "Coverage" , "Scheme" , "ST" , "After_trim_per_base_sequence_content" , "After_trim_overrepresented_sequences" , "After_trim_%GC" , "After_trim_Total Bases" , "After_trim_Total Sequences" , "After_trim_median_sequence_length" , "After_trim_avg_sequence_length" , "After_trim_total_deduplicated_percentage" , "After_trim_Sequence length" , "After_trim_adapter_content" , "N50" , "Total length" , "Total # of contigs"]].copy() #.copy() to deal with SettingWithCopyWarning error
QC_check_condition = [
(QC_summary_temp7['Total # of contigs'] > config["max_contigs"]),
(QC_summary_temp7['Total # of contigs'] < config["min_contigs"]),
(QC_summary_temp7['Total length'] > config["assembly_length"]),
(QC_summary_temp7['Total length'] < config["genome_size"]),
(QC_summary_temp7['Coverage'] < config["coverage"]),
(QC_summary_temp7['Total # of contigs'].isnull()),
]
status = ['FAIL', 'FAIL', 'FAIL', 'FAIL', 'FAIL', "Run FAIL"]
QC_summary_temp7['QC Check'] = np.select(QC_check_condition, status, default='PASS')
QC_summary_temp8 = pd.merge(QC_summary_temp7, skani_summary, on=["Sample", "Sample"], how='left') # Merge skani df into the existing dataframe
QC_summary_temp8.to_csv('results/%s/%s_Report/data/%s_QC_summary.csv' % (prefix, prefix, prefix), index=False)
def plot(prefix, outdir):
prefix = prefix.pop()
outdir = outdir.pop()
# Organize reports directory
report_dir = str(outdir) + "/%s_Report" % prefix
report_script_dir = str(outdir) + "/%s_Report/scripts" % prefix
QC_summary = pd.read_csv('results/%s/%s_Report/data/%s_QC_summary.csv' % (prefix, prefix, prefix), sep=',', header=0)
Coverage = pd.read_csv("results/%s/%s_Report/data/%s_Final_Coverage.txt" % (prefix, prefix, prefix), sep=',', header=0)
Coverage_dist = QC_summary.sort_values(by='Coverage',ascending=False).plot(x='Sample', y='Coverage', kind="barh", title="Estimated Genome Coverage", figsize=(20, 20), fontsize=40).get_figure()
Coverage_dist.savefig('%s/fig/%s_Coverage_distribution.png' % (report_dir, prefix), dpi=600)
ax1 = QC_summary.plot.scatter(x = 'After_trim_total_deduplicated_percentage', y = 'After_trim_Total Sequences', c = 'DarkBlue')
fig = ax1.get_figure()
fig.savefig('%s/fig/%s_raw_dedup_vs_totalsequence.png' % (report_dir, prefix), dpi=600)
ax1 = QC_summary.plot.scatter(x = 'After_trim_total_deduplicated_percentage', y = 'After_trim_Total Sequences', c = 'DarkBlue')
fig = ax1.get_figure()
fig.savefig('%s/fig/%s_aftertrim_dedup_vs_totalsequence.png' % (report_dir, prefix), dpi=600)
ax1.cla()
#ax = sns.scatterplot(x=QC_summary['Total # of contigs'], y=QC_summary['After_trim_%GC'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_Aftertrim_GC.png' % (report_dir, prefix), dpi=600)
#plt.savefig('%s/fig/%s_Assembly_contig_vs_Aftertrim_GC.png' % (report_dir, prefix), dpi=200)
#ax.cla()
#ax = sns.scatterplot(x=QC_summary['Total length'], y=QC_summary['After_trim_%GC'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_Aftertrim_GC.png' % (report_dir, prefix), dpi=600)
#plt.savefig('%s/fig/%s_Assembly_length_vs_Aftertrim_GC.png' % (report_dir, prefix), dpi=200)
#ax.cla()
#ax = sns.scatterplot(x=QC_summary['Total # of contigs'], y=QC_summary['N50'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_N50.png' % (report_dir, prefix), dpi=600)
#plt.savefig('%s/fig/%s_Assembly_contig_vs_N50.png' % (report_dir, prefix), dpi=200)
#ax.cla()
#ax = sns.scatterplot(x=QC_summary['Total # of contigs'], y=QC_summary['Coverage'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_N50.png' % (report_dir, prefix), dpi=600)
#plt.savefig('%s/fig/%s_Assembly_contig_vs_Coverage.png' % (report_dir, prefix), dpi=200)
#ax.cla()
#ax = sns.scatterplot(x=QC_summary['Total # of contigs'], y=QC_summary['Total length'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_N50.png' % (report_dir, prefix), dpi=600)
#plt.savefig('%s/fig/%s_Assembly_contig_vs_length.png' % (report_dir, prefix), dpi=200)
#ax.cla()
#rule all:
# input:
# coverage_report = expand("results/{prefix}/{prefix}_Report/data/{prefix}_Final_Coverage.txt", prefix=PREFIX),
#kraken_report = expand("results/{prefix}/{prefix}_Report/data/{prefix}_Kraken_report_final.csv", prefix=PREFIX),
# skani_report = expand("results/{prefix}/{prefix}_Report/data/{prefix}_Skani_report_final.csv", prefix=PREFIX),
# multiqc_report = expand("results/{prefix}/{prefix}_Report/multiqc/{prefix}_QC_report.html", prefix=PREFIX),
# mlst_report = expand("results/{prefix}/{prefix}_Report/data/{prefix}_MLST_results.csv", prefix=PREFIX),
# QC_summary = expand("results/{prefix}/{prefix}_Report/data/{prefix}_QC_summary.csv", prefix=PREFIX),
# QC_plot = expand("results/{prefix}/{prefix}_Report/fig/{prefix}_Coverage_distribution.png", prefix=PREFIX)
rule coverage_report:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
coverage_out = expand("results/{prefix}/raw_coverage/{sample}/{sample}_coverage.json", prefix=PREFIX, sample=SAMPLE)
output:
coverage = f"results/{{prefix}}/{{prefix}}_Report/data/{{prefix}}_Final_Coverage.txt",
params:
prefix = "{prefix}",
run:
coverage_report({params.prefix}, {input.outdir})
rule amr_report:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
output:
amr_summary = f"results/{{prefix}}/report/{{prefix}}_AMR_minimal_report.csv",
params:
prefix = "{prefix}",
phandango = "--no_tree"
conda:
"envs/ariba.yaml"
#singularity:
# "docker://staphb/ariba:2.14.7"
shell:
"ariba summary --preset minimal {params.phandango} {input.outdir}/report/{params.prefix}_AMR_minimal_report {input.outdir}/*/ariba_card/report.tsv && ariba summary --preset all {params.phandango} {input.outdir}/report/{params.prefix}_AMR_all_report {input.outdir}/*/ariba_card/report.tsv"
#rule kraken_report:
# input:
# outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
# output:
# kraken_report = f"results/{{prefix}}/{{prefix}}_Report/data/{{prefix}}_Kraken_report_final.csv",
# params:
# prefix = "{prefix}",
# run:
# kraken_report({params.prefix}, {input.outdir})
rule skani_report:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
skani_out = expand("results/{prefix}/skani/{sample}/{sample}_skani_output.txt", prefix=PREFIX, sample=SAMPLE)
output:
skani_report = f"results/{{prefix}}/{{prefix}}_Report/data/{{prefix}}_Skani_report_final.csv",
params:
prefix = "{prefix}",
run:
skani_report({input.outdir}, {params.prefix})
rule multiqc:
input:
inputdir = lambda wildcards: expand(f"results/{wildcards.prefix}"),
coverage = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_Final_Coverage.txt"),
#kraken = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_Kraken_report_final.csv"),
mlst = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_MLST_results.csv"),
output:
multiqc_fastqc_report = f"results/{{prefix}}/{{prefix}}_Report/multiqc/{{prefix}}_QC_report.html",
multiqc_fastqc = f"results/{{prefix}}/{{prefix}}_Report/multiqc/{{prefix}}_QC_report_data/multiqc_fastqc.txt",
multiqc_general_stats = f"results/{{prefix}}/{{prefix}}_Report/multiqc/{{prefix}}_QC_report_data/multiqc_general_stats.txt",
#fastqc_report = f"results//{{prefix}}/{{prefix}}_Report/multiqc/{{prefix}}_QC_report_data/multiqc_fastqc.txt"
params:
outdir = "results/{prefix}/{prefix}_Report",
prefix = "{prefix}",
#conda:
# "envs/multiqc.yaml"
singularity:
"docker://staphb/multiqc:1.19"
shell:
"multiqc -f --export --outdir {params.outdir}/multiqc -n {params.prefix}_QC_report -i {params.prefix}_QC_report {input.inputdir}/quality_aftertrim/*/*_Forward {input.inputdir}/prokka/* {input.inputdir}/quast/*"
rule mlst_report:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
mlst_out = expand("results/{prefix}/mlst/{sample}/report.tsv", prefix=PREFIX, sample=SAMPLE)
output:
mlst_report = f"results/{{prefix}}/{{prefix}}_Report/data/{{prefix}}_MLST_results.csv",
params:
prefix = "{prefix}",
shell:
"echo \"Sample\tScheme\tST\" > {output.mlst_report} && cut -f1-3 {input.outdir}/mlst/*/report.tsv >> {output.mlst_report}"
rule Summary:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
multiqc_fastqc_report = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/multiqc/{wildcards.prefix}_QC_report.html"),
multiqc_fastqc = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/multiqc/{wildcards.prefix}_QC_report_data/multiqc_fastqc.txt"),
multiqc_general_stats = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/multiqc/{wildcards.prefix}_QC_report_data/multiqc_general_stats.txt"),
coverage = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_Final_Coverage.txt"),
#kraken = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_Kraken_report_final.csv"),
mlst = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_MLST_results.csv"),
skani_report = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_Skani_report_final.csv")
output:
QC_summary_report = f"results/{{prefix}}/{{prefix}}_Report/data/{{prefix}}_QC_summary.csv",
params:
prefix = "{prefix}",
run:
summary({params.prefix}, {input.outdir})
rule plot:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
QC_summary_report = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_QC_summary.csv"),
output:
QC_summary_report = f"results/{{prefix}}/{{prefix}}_Report/fig/{{prefix}}_Coverage_distribution.png",
params:
prefix = "{prefix}",
run:
plot({params.prefix}, {input.outdir})