Skip to content

Sneha-mav/Movie-Recommendation-System-CF-CBF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Movie-Recommendation-System-CF-CBF

A web-based movie recommendation engine built using Streamlit, implementing both Content-Based Filtering and Collaborative Filtering (KNN).

  • Content-Based Filtering: Computes cosine similarity between movie metadata to suggest similar titles.
  • Collaborative Filtering: Utilizes user-item matrix and K-Nearest Neighbors (KNN) for personalized recommendations.

Datasets

⚙️ Setup Instructions

1. Clone the Repository

git clone https://github.com/Sneha-mav/Movie-Recommendation-System-CF-CBF.git
cd Movie-Recommendation-System-CF-CBF

2. Install Dependencies

pip install -r requirements.txt

3. Configure Environment Variables

Create a .env file and add your TMDB Bearer Token:

TMDB_API_KEY=your_token

4. Run the Application

streamlit run app.py

About

Movie Recommendation System Using Two approaches Collaborative Filtering ( CF ) & Content-Based Filtering ( CBF )

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published