Skip to content

Commit

Permalink
first-release
Browse files Browse the repository at this point in the history
  • Loading branch information
duguyue100 committed Jun 16, 2021
0 parents commit 7a01655
Show file tree
Hide file tree
Showing 373 changed files with 1,856 additions and 0 deletions.
129 changes: 129 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# IPython
profile_default/
ipython_config.py

# pyenv
.python-version

# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock

# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/

# Celery stuff
celerybeat-schedule
celerybeat.pid

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/
.dmypy.json
dmypy.json

# Pyre type checker
.pyre/
94 changes: 94 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
# MVSEC-NIGHTL21

https://user-images.githubusercontent.com/939553/122247023-57b18e80-cec7-11eb-8ac9-ed6bb88c1095.mp4

## Usage

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qL8LoCZ-mm_O8K3aMDo22M3KSUtaK0cp?usp=sharing)

### Data Description

### MVSEC at night condition

We used `outdoor_night1_data.hdf5` of the MVSEC dataset.
The dataset is recorded with dual camera, we use the `left` camera.
In the HDF5 archive, the relevant dataset can be accessed as following:

```python
mvsec_data = h5py.File(mvsec_data_path, "r")

# raw frame
frame_data = mvsec_data["davis"]["left"]["image_raw"]
# frame timestamps
frame_ts = mvsec_data["davis"]["left"]["image_raw_ts"]

# raw events
events_data = mvsec_data["davis"]["left"]["events"]

# event indices that corresponds to the frame
frame_event_inds = mvsec_data["davis"]["left"]["image_raw_event_inds"]
```

For visualization in this repository, we only used the raw frames.

### MVSEC-NIGHTL21 Labels

In the validation set, there are 400 frames. The list of the frame indices is in [`frame_list.txt`](./frame_list.txt).

Among these 400 frames, 368 frames are labeled. The frames that don't have labels are listed in [`frames_that_dont_have_labels.txt`](./frames_that_dont_have_labels.txt).
We labelled `car` in these frames.

The labelled groundtruths are stored in `.txt` files and can be found in [`mvsec_nightl21_labels`](./mvsec_nightl21_labels).

Each labeled car is in the format `car x_min y_min x_max y_max`. For example:

```
car 48 112 143 170
```

means `x_min=48, y_min=112`, and `x_max=143, y_max=170`.


### Visualization

1. Install dependency
```
pip install h5py
pip install matplotlib
pip install opencv-python
```
2. Clone this repository
```
git clone https://github.com/SensorsINI/MVSEC-NIGHTL21
cd MVSEC-NIGHTL21
```
3. Download the `outdoor_night1_data.hdf5` from MVSEC dataset, available [here](https://drive.google.com/drive/folders/1rwyRk26wtWeRgrAx_fgPc-ubUzTFThkV)
4. Run The Visualization
```
python visualize_mvsec_nightl21.py --mvsec_data /path/to/outdoor_night1_data.hdf5 --gt_root ./mvsec_nightl21_labels
```
If everything works, you should see a video that annotates the cars.
## Citation
When use this dataset, please cite:
```bibtex
@InProceedings{Hu_2021_CVPR,
author = {Hu, Yuhuang and Liu, Shih-Chii and Delbruck, Tobi},
title = {v2e: From Video Frames to Realistic DVS Events},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2021},
pages = {1312-1321}
}
```

## Contact

Yuhuang Hu
[email protected]
Loading

0 comments on commit 7a01655

Please sign in to comment.