Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

优化单字符坐标及返回单字符置信度 #293

Merged
merged 2 commits into from
Dec 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions python/rapidocr_onnxruntime/cal_rec_boxes/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,14 +28,14 @@ def __call__(
rec_txt, rec_conf, rec_word_info = rec_res[0], rec_res[1], rec_res[2]
h, w = img.shape[:2]
img_box = np.array([[0, 0], [w, 0], [w, h], [0, h]])
word_box_content_list, word_box_list = self.cal_ocr_word_box(
word_box_content_list, word_box_list, conf_list = self.cal_ocr_word_box(
rec_txt, img_box, rec_word_info
)
word_box_list = self.adjust_box_overlap(copy.deepcopy(word_box_list))
word_box_list = self.reverse_rotate_crop_image(
copy.deepcopy(box), word_box_list, direction
)
res.append([rec_txt, rec_conf, word_box_list, word_box_content_list])
res.append([rec_txt, rec_conf, word_box_list, word_box_content_list, conf_list])
return res

@staticmethod
Expand All @@ -60,13 +60,13 @@ def get_box_direction(box: np.ndarray) -> str:
@staticmethod
def cal_ocr_word_box(
rec_txt: str, box: np.ndarray, rec_word_info: List[Tuple[str, List[int]]]
) -> Tuple[List[str], List[List[int]]]:
) -> Tuple[List[str], List[List[int]], List[float]]:
"""Calculate the detection frame for each word based on the results of recognition and detection of ocr
汉字坐标是单字的
英语坐标是单词级别的
"""

col_num, word_list, word_col_list, state_list = rec_word_info
col_num, word_list, word_col_list, state_list, conf_list = rec_word_info
box = box.tolist()
bbox_x_start = box[0][0]
bbox_x_end = box[1][0]
Expand All @@ -84,7 +84,7 @@ def cal_ocr_word_box(
def cal_char_width(width_list, word_col_):
if len(word_col_) == 1:
return
char_total_length = (word_col_[-1] - word_col_[0] + 1) * cell_width
char_total_length = (word_col_[-1] - word_col_[0]) * cell_width
char_width = char_total_length / (len(word_col_) - 1)
width_list.append(char_width)

Expand Down Expand Up @@ -124,7 +124,7 @@ def cal_box(col_list, width_list, word_box_list_):
cal_box(cn_col_list, cn_width_list, word_box_list)
cal_box(en_col_list, en_width_list, word_box_list)
sorted_word_box_list = sorted(word_box_list, key=lambda box: box[0][0])
return word_box_content_list, sorted_word_box_list
return word_box_content_list, sorted_word_box_list, conf_list

@staticmethod
def adjust_box_overlap(
Expand Down
18 changes: 15 additions & 3 deletions python/rapidocr_onnxruntime/ch_ppocr_det/text_detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,9 @@

class TextDetector:
def __init__(self, config: Dict[str, Any]):
limit_side_len = config.get("limit_side_len", 736)
limit_type = config.get("limit_type", "min")
self.preprocess_op = DetPreProcess(limit_side_len, limit_type)
self.limit_type = config.get("limit_type", "min")
self.limit_side_len = config.get("limit_side_len", 736)
self.preprocess_op = None

post_process = {
"thresh": config.get("thresh", 0.3),
Expand All @@ -49,6 +49,7 @@ def __call__(self, img: np.ndarray) -> Tuple[Optional[np.ndarray], float]:
raise ValueError("img is None")

ori_img_shape = img.shape[0], img.shape[1]
self.preprocess_op = self.get_preprocess(max(img.shape[0], img.shape[1]))
prepro_img = self.preprocess_op(img)
if prepro_img is None:
return None, 0
Expand All @@ -59,6 +60,17 @@ def __call__(self, img: np.ndarray) -> Tuple[Optional[np.ndarray], float]:
elapse = time.perf_counter() - start_time
return dt_boxes, elapse

def get_preprocess(self, max_wh):
if self.limit_type == 'min':
limit_side_len = self.limit_side_len
elif max_wh < 960:
limit_side_len = 960
elif max_wh < 1500:
limit_side_len = 1500
else:
limit_side_len = 2000
return DetPreProcess(limit_side_len, self.limit_type)

def filter_tag_det_res(
self, dt_boxes: np.ndarray, image_shape: Tuple[int, int]
) -> np.ndarray:
Expand Down
13 changes: 9 additions & 4 deletions python/rapidocr_onnxruntime/ch_ppocr_rec/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ def decode(
selection &= text_index[batch_idx] != ignored_token

if text_prob is not None:
conf_list = text_prob[batch_idx][selection]
conf_list = np.array(text_prob[batch_idx][selection]).tolist()
else:
conf_list = [1] * len(selection)

Expand All @@ -116,6 +116,7 @@ def decode(
word_list,
word_col_list,
state_list,
conf_list
],
)
)
Expand Down Expand Up @@ -147,18 +148,22 @@ def get_word_info(
word_list = []
word_col_list = []
state_list = []
valid_col = np.where(selection == True)[0]
valid_col = np.where(selection)[0]
col_width = np.zeros(valid_col.shape)
if len(valid_col) > 0:
col_width[1:] = valid_col[1:] - valid_col[:-1]
col_width[0] = min(3 if "\u4e00" <= text[0] <= "\u9fff" else 2, int(valid_col[0]))

for c_i, char in enumerate(text):
if "\u4e00" <= char <= "\u9fff":
c_state = "cn"
else:
c_state = "en&num"

if state == None:
if state is None:
state = c_state

if state != c_state:
if state != c_state or col_width[c_i] > 4:
if len(word_content) != 0:
word_list.append(word_content)
word_col_list.append(word_col_content)
Expand Down
1 change: 1 addition & 0 deletions python/rapidocr_onnxruntime/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -334,6 +334,7 @@ def main():
use_det=use_det,
use_cls=use_cls,
use_rec=use_rec,
**vars(args)
)
logger.info(result)

Expand Down