NephroNet-VGG16 is a deep learning project aimed at classifying kidney diseases from CT scan images using the VGG16 convolutional neural network model. This project leverages the power of VGG16's pre-trained architecture to accurately detect and categorize kidney diseases, providing a valuable tool for medical professionals and researchers.
Features : Pre-trained VGG16 Model: Utilizes the VGG16 model pre-trained on ImageNet for feature extraction and fine-tuning on kidney CT scan images. Data Augmentation: Implements various data augmentation techniques to enhance the robustness and generalizability of the model. High Accuracy: Achieves high classification accuracy through extensive training and validation processes. User-Friendly Interface: Provides a straightforward interface for loading images, predicting results, and visualizing outcomes.
- Update config.yaml
- Update secrets.yaml [Optional]
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the dvc.yaml
- app.py
Clone the repository
https://github.com/RaniaBZ/NephroNet-VGG16
python -m venv venv
venv\Scripts\activate
pip install -r requirements.txt
# Finally run the following command
python app.py
Now,
open up you local host and port
- mlflow ui
Run this to export as env variables:
export MLFLOW_TRACKING_URI= "URI"
export MLFLOW_TRACKING_USERNAME="USER NAME"
export MLFLOW_TRACKING_PASSWORD="PASSWORD"
python script.py
- dvc init
- dvc repro
- dvc dag
MLflow
- Its Production Grade
- Trace all of your expriements
- Logging & taging your model
DVC
- Its very lite weight for POC only
- lite weight expriements tracker
- It can perform Orchestration (Creating Pipelines)
#with specific access
1. EC2 access : It is virtual machine
2. ECR: Elastic Container registry to save your docker image in aws
#Description: About the deployment
1. Build docker image of the source code
2. Push your docker image to ECR
3. Launch Your EC2
4. Pull Your image from ECR in EC2
5. Lauch your docker image in EC2
#Policy:
1. AmazonEC2ContainerRegistryFullAccess
2. AmazonEC2FullAccess
- Save the URI: 566373416292.dkr.ecr.us-east-1.amazonaws.com/chicken
#optinal
sudo apt-get update -y
sudo apt-get upgrade
#required
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker ubuntu
newgrp docker
setting>actions>runner>new self hosted runner> choose os> then run command one by one
AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=
AWS_REGION = us-east-1
AWS_ECR_LOGIN_URI =
ECR_REPOSITORY_NAME = simple-app