Real-time, Fully Local Speech-to-Text with Speaker Identification
Real-time speech transcription directly to your browser, with a ready-to-use backend+server and a simple frontend. โจ
- SimulStreaming (SOTA 2025) - Ultra-low latency transcription with AlignAtt policy
- WhisperStreaming (SOTA 2023) - Low latency transcription with LocalAgreement policy
- Streaming Sortformer (SOTA 2025) - Advanced real-time speaker diarization
- Diart (SOTA 2021) - Real-time speaker diarization
- Silero VAD (2024) - Enterprise-grade Voice Activity Detection
Why not just run a simple Whisper model on every audio batch? Whisper is designed for complete utterances, not real-time chunks. Processing small segments loses context, cuts off words mid-syllable, and produces poor transcription. WhisperLiveKit uses state-of-the-art simultaneous speech research for intelligent buffering and incremental processing.
The backend supports multiple concurrent users. Voice Activity Detection reduces overhead when no voice is detected.
pip install whisperlivekit
FFmpeg is required and must be installed before using WhisperLiveKit
OS How to install Ubuntu/Debian sudo apt install ffmpeg
MacOS brew install ffmpeg
Windows Download .exe from https://ffmpeg.org/download.html and add to PATH
-
Start the transcription server:
whisperlivekit-server --model base --language en
-
Open your browser and navigate to
http://localhost:8000
. Start speaking and watch your words appear in real-time!
- See tokenizer.py for the list of all available languages.
- For HTTPS requirements, see the Parameters section for SSL configuration options.
Optional | pip install |
---|---|
Speaker diarization with Sortformer | git+https://github.com/NVIDIA/NeMo.git@main#egg=nemo_toolkit[asr] |
Speaker diarization with Diart | diart |
Original Whisper backend | whisper |
Improved timestamps backend | whisper-timestamped |
Apple Silicon optimization backend | mlx-whisper |
OpenAI API backend | openai |
See Parameters & Configuration below on how to use them.
Command-line Interface: Start the transcription server with various options:
# Use better model than default (small)
whisperlivekit-server --model large-v3
# Advanced configuration with diarization and language
whisperlivekit-server --host 0.0.0.0 --port 8000 --model medium --diarization --language fr
Python API Integration: Check basic_server for a more complete example of how to use the functions and classes.
from whisperlivekit import TranscriptionEngine, AudioProcessor, parse_args
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from contextlib import asynccontextmanager
import asyncio
transcription_engine = None
@asynccontextmanager
async def lifespan(app: FastAPI):
global transcription_engine
transcription_engine = TranscriptionEngine(model="medium", diarization=True, lan="en")
yield
app = FastAPI(lifespan=lifespan)
async def handle_websocket_results(websocket: WebSocket, results_generator):
async for response in results_generator:
await websocket.send_json(response)
await websocket.send_json({"type": "ready_to_stop"})
@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
global transcription_engine
# Create a new AudioProcessor for each connection, passing the shared engine
audio_processor = AudioProcessor(transcription_engine=transcription_engine)
results_generator = await audio_processor.create_tasks()
results_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
await websocket.accept()
while True:
message = await websocket.receive_bytes()
await audio_processor.process_audio(message)
Frontend Implementation: The package includes an HTML/JavaScript implementation here. You can also import it using from whisperlivekit import get_inline_ui_html
& page = get_inline_ui_html()
An important list of parameters can be changed. But what should you change?
- the
--model
size. List and recommandations here - the
--language
. List here. If you useauto
, the model attempts to detect the language automatically, but it tends to bias towards English. - the
--backend
? you can switch to--backend faster-whisper
ifsimulstreaming
does not work correctly or if you prefer to avoid the dual-license requirements. --warmup-file
, if you have one--host
,--port
,--ssl-certfile
,--ssl-keyfile
, if you set up a server--diarization
, if you want to use it.
The rest I don't recommend. But below are your options.
Parameter | Description | Default |
---|---|---|
--model |
Whisper model size. | small |
--language |
Source language code or auto |
auto |
--task |
transcribe or translate |
transcribe |
--backend |
Processing backend | simulstreaming |
--min-chunk-size |
Minimum audio chunk size (seconds) | 1.0 |
--no-vac |
Disable Voice Activity Controller | False |
--no-vad |
Disable Voice Activity Detection | False |
--warmup-file |
Audio file path for model warmup | jfk.wav |
--host |
Server host address | localhost |
--port |
Server port | 8000 |
--ssl-certfile |
Path to the SSL certificate file (for HTTPS support) | None |
--ssl-keyfile |
Path to the SSL private key file (for HTTPS support) | None |
WhisperStreaming backend options | Description | Default |
---|---|---|
--confidence-validation |
Use confidence scores for faster validation | False |
--buffer_trimming |
Buffer trimming strategy (sentence or segment ) |
segment |
SimulStreaming backend options | Description | Default |
---|---|---|
--frame-threshold |
AlignAtt frame threshold (lower = faster, higher = more accurate) | 25 |
--beams |
Number of beams for beam search (1 = greedy decoding) | 1 |
--decoder |
Force decoder type (beam or greedy ) |
auto |
--audio-max-len |
Maximum audio buffer length (seconds) | 30.0 |
--audio-min-len |
Minimum audio length to process (seconds) | 0.0 |
--cif-ckpt-path |
Path to CIF model for word boundary detection | None |
--never-fire |
Never truncate incomplete words | False |
--init-prompt |
Initial prompt for the model | None |
--static-init-prompt |
Static prompt that doesn't scroll | None |
--max-context-tokens |
Maximum context tokens | None |
--model-path |
Direct path to .pt model file. Download it if not found | ./base.pt |
--preloaded-model-count |
Optional. Number of models to preload in memory to speed up loading (set up to the expected number of concurrent users) | 1 |
Diarization options | Description | Default |
---|---|---|
--diarization |
Enable speaker identification | False |
--diarization-backend |
diart or sortformer |
sortformer |
--segmentation-model |
Hugging Face model ID for Diart segmentation model. Available models | pyannote/segmentation-3.0 |
--embedding-model |
Hugging Face model ID for Diart embedding model. Available models | speechbrain/spkrec-ecapa-voxceleb |
For diarization using Diart, you need access to pyannote.audio models:
- Accept user conditions for the
pyannote/segmentation
model- Accept user conditions for the
pyannote/segmentation-3.0
model- Accept user conditions for the
pyannote/embedding
model- Login with HuggingFace:
huggingface-cli login
To deploy WhisperLiveKit in production:
-
Server Setup: Install production ASGI server & launch with multiple workers
pip install uvicorn gunicorn gunicorn -k uvicorn.workers.UvicornWorker -w 4 your_app:app
-
Frontend: Host your customized version of the
html
example & ensure WebSocket connection points correctly -
Nginx Configuration (recommended for production):
server { listen 80; server_name your-domain.com; location / { proxy_pass http://localhost:8000; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection "upgrade"; proxy_set_header Host $host; }}
-
HTTPS Support: For secure deployments, use "wss://" instead of "ws://" in WebSocket URL
Deploy the application easily using Docker with GPU or CPU support.
- Docker installed on your system
- For GPU support: NVIDIA Docker runtime installed
With GPU acceleration (recommended):
docker build -t wlk .
docker run --gpus all -p 8000:8000 --name wlk wlk
CPU only:
docker build -f Dockerfile.cpu -t wlk .
docker run -p 8000:8000 --name wlk wlk
Custom configuration:
# Example with custom model and language
docker run --gpus all -p 8000:8000 --name wlk wlk --model large-v3 --language fr
- Large models: Ensure your Docker runtime has sufficient memory allocated
--build-arg
Options:EXTRAS="whisper-timestamped"
- Add extras to the image's installation (no spaces). Remember to set necessary container options!HF_PRECACHE_DIR="./.cache/"
- Pre-load a model cache for faster first-time startHF_TKN_FILE="./token"
- Add your Hugging Face Hub access token to download gated models
Capture discussions in real-time for meeting transcription, help hearing-impaired users follow conversations through accessibility tools, transcribe podcasts or videos automatically for content creation, transcribe support calls with speaker identification for customer service...