This work is for research project at NHanCE lab at Purdue University through the NSF CPS Frontier: Cognitive Autonomy for Human CPS project.
TODO:
- Get data from Fixation data
File structure:
.
│ .gitignore
│ 7-11-feat_list.mat
│ feat_suggest.txt
│ README.md
│ requirements.txt
│
├───Data-Processing
│ │ check-missing.py
│ │ ERROR-data.txt
│ │
│ ├───daq-data-process
│ │ accum_feat_v2.1.py
│ │ convert_daq_txt-csv.m
│ │ getObsvWindow.py
│ │ Obstacle_Finder.py
│ │
│ └───eye-track-data-process
│ convert-eyetracking-txt.py
│ convert-miniSim-txt.py
│ get_Fixation_wind.py
│ match_eye_trk.py
│ miniSim-to-txt.py
│
└───Models
│ Kmeans.py
│ MyDataLoader.py
│ RF.py
│ Utils.py
convert_daq_csv.m
: convert daq features into csv files - each feature results in 1 one csv file (Matlab) -- do not use this.convert_daq_txt.m
: convert daq features into txt files - each feature results in 1 one txt file (Matlab).requirements.txt
: contain the version of Python libraries used in this project.accum_csv.py
: merge all csv file into a big csv file that contains the whole dataset.miniSim-to-txt.py
: convert .miniSim file to .txt file.merge-miniSim.py
: merge dataset from daq with .miniSim data based onframe
.convert-miniSim-txt.py
andconvert-eyetracking-txt.py
: create the samemerge
column to easily merge miniSim and eyetracking data together.
- Run
convert_daq_csv.m
- Setup environment
- Install libraries using
requirements.txt
- Run
accum_feat.py
- Run
miniSim-to-txt.py
- Run
merge-miniSim.py
- Run the
setpath_ndaqtools.m
in ndaqtools package (contact Professor Brandon Pitts at Purdue University for further information) - Type "DaqViewer" in Matlab's Command Window (a window will pop up)
- (optional) Click "Create Cell List" to choose features you want to extract values, then save as
.mat
file - In "Read DAQ Option", choose "Read cell list" and choose
.mat
file that contains list of features - Click "Read DAQ Vars"
- Run
convert_daq_csv.m
after editing file location - Result: each csv file contains it corresponding feature
Click to expand
- Create an environment for this project. I suggest using Anaconda. Run this command to create virtual env (cheatsheet):
conda create --name env_name python=3.9.7
Then activate the env:
conda activate env_name
- Run this command to install the required libraries:
pip install -r requirements.txt
- Open terminal
- Type the following command:
python accum_csv.py output_filename.csv
Or extension of feature data files: txt/csv (result from convert_daq_txt.m
)
python accum_csv.py filename.txt -x extension