Skip to content

Commit

Permalink
DeepSort
Browse files Browse the repository at this point in the history
  • Loading branch information
PINTO0309 committed Jan 3, 2021
1 parent 0166356 commit 5954f8e
Show file tree
Hide file tree
Showing 3 changed files with 71 additions and 0 deletions.
9 changes: 9 additions & 0 deletions 087_DeepSort/download.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
#!/bin/bash

curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1CIAU0OQL4bFIms-e74V2OUYnqIzq10q-" > /dev/null
CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1CIAU0OQL4bFIms-e74V2OUYnqIzq10q-" -o resources.tar.gz
tar -zxvf resources.tar.gz
rm resources.tar.gz

echo Download finished.
60 changes: 60 additions & 0 deletions 087_DeepSort/feature_extractor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import torch
import torchvision.transforms as transforms
import numpy as np
import cv2
import logging

from .model import Net


class Extractor(object):
def __init__(self, model_path, use_cuda=True):
self.net = Net(reid=True)
self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
print('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ model_path:', model_path)
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)['net_dict']
self.net.load_state_dict(state_dict)

logger = logging.getLogger("root.tracker")
logger.info("Loading weights from {}... Done!".format(model_path))
self.net.to(self.device)
self.size = (64, 128)
self.norm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

def _preprocess(self, im_crops):
"""
TODO:
1. to float with scale from 0 to 1
2. resize to (64, 128) as Market1501 dataset did
3. concatenate to a numpy array
3. to torch Tensor
4. normalize
"""
def _resize(im, size):
return cv2.resize(im.astype(np.float32)/255., size)

im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze(
0) for im in im_crops], dim=0).float()
return im_batch

def __call__(self, im_crops):
im_batch = self._preprocess(im_crops)
with torch.no_grad():
im_batch = im_batch.to(self.device)
features = self.net(im_batch)

################################################################################################
torch.onnx.export(self.net, im_batch, 'deepsort_128x64.onnx', verbose=True, opset_version=12)
################################################################################################

return features.cpu().numpy()


if __name__ == '__main__':
img = cv2.imread("demo.jpg")[:, :, (2, 1, 0)]
extr = Extractor("checkpoint/ckpt.t7")
feature = extr(img)
print(feature.shape)
2 changes: 2 additions & 0 deletions 087_DeepSort/url.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch
https://github.com/PINTO0309/openvino2tensorflow

0 comments on commit 5954f8e

Please sign in to comment.