Skip to content

OuyangWenyu/hydroutils

Repository files navigation

hydroutils

image image image Python Version License: MIT

A comprehensive collection of utility functions for hydrological modeling and analysis

Hydroutils is a Python package designed for hydrological modeling workflows, providing statistical analysis, data visualization, file handling, time period operations and unit conversion, specifically tailored for hydrological research and applications.

This package is still under development, and the API is subject to change.

✨ Features

πŸ”§ Data Correction (hydro_correct)

  • Hydrograph Correction: Interactive flood hydrograph correction tools
  • Smoothing Algorithms: Five-point quadratic smoothing for noise reduction
  • Spline Interpolation: Cubic spline interpolation for data refinement
  • Combined Correction: Integrated correction process for improved data quality

πŸ“Š Statistical Analysis (hydro_stat)

  • Dynamic Metric Functions: Automatically generated statistical functions (NSE, RMSE, MAE, etc.)
  • Multi-dimensional Analysis: Support for 2D/3D arrays for basin-scale analysis
  • HydroErr Integration: Standardized hydrological metrics through HydroErr package
  • NaN Handling: Flexible strategies ('no', 'sum', 'mean') for missing data
  • Runtime Metric Addition: Add custom metrics dynamically with add_metric()

πŸ“ˆ Visualization (hydro_plot)

  • Geospatial Plotting: Cartopy integration for map-based visualizations
  • Chinese Font Support: Automatic font configuration for Chinese text rendering
  • Statistical Plots: ECDF, box plots, heatmaps, correlation matrices
  • Hydrological Specializations: Flow duration curves, unit hydrographs, precipitation plots
  • Customizable Styling: Extensive configuration options for colors, styles, and formats

πŸ“ File Operations (hydro_file)

  • JSON Serialization: NumPy array support with NumpyArrayEncoder
  • ZIP Handling: Nested ZIP file extraction and management
  • Cache Management: Automatic cache directory creation and management
  • Async Operations: Asynchronous data retrieval capabilities

⏰ Time Period (hydro_time)

  • UTC Calculations: Timezone offset computation from coordinates
  • Date Parsing: Flexible date string parsing and manipulation
  • Time Range Operations: Intersection, generation, and validation
  • Interval Detection: Automatic time interval identification

🏷️ Unit Conversion (hydro_units)

  • Streamflow Units: Comprehensive unit conversion for hydrological variables
  • Time Interval Detection: Automatic detection and validation of time intervals
  • Unit Compatibility: Validation functions for unit consistency
  • Pint Integration: Physical units handling with pint and pint-xarray

🌊 Event Analysis (hydro_event)

  • Hydrological Event Detection: Flood event identification
  • Event Characterization: Duration, magnitude, and timing analysis

πŸ“ Logging (hydro_log)

  • Rich Console Output: Colored and formatted console logging
  • Progress Tracking: Advanced progress bars and status indicators
  • Debug Support: Comprehensive debugging and error reporting

πŸš€ Quick Start

Installation

# Install from PyPI
pip install hydroutils

# Install with development dependencies using uv (recommended)
pip install uv
uv add hydroutils

# For development setup
git clone https://github.com/OuyangWenyu/hydroutils.git
cd hydroutils
uv sync --all-extras --dev

Basic Usage

import hydroutils
import numpy as np

# Statistical Analysis
obs = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
sim = np.array([1.1, 2.1, 2.9, 3.9, 5.1])

# Calculate Nash-Sutcliffe Efficiency
nse_value = hydroutils.nse(obs, sim)
print(f"NSE: {nse_value:.3f}")

# Multiple metrics at once
metrics = hydroutils.stat_error(obs, sim)
print(f"RMSE: {metrics['rmse']:.3f}")
print(f"MAE: {metrics['mae']:.3f}")

# Visualization
import matplotlib.pyplot as plt
fig, ax = hydroutils.plot_ecdf([obs, sim], 
                               labels=['Observed', 'Simulated'],
                               colors=['blue', 'red'])
plt.show()

πŸ› οΈ Development

Setting Up Development Environment

# Clone the repository
git clone https://github.com/OuyangWenyu/hydroutils.git
cd hydroutils

# Install UV (modern Python package manager)
pip install uv

# Setup development environment
uv sync --all-extras --dev

Development Commands

# Run tests
uv run pytest                    # Basic test run
uv run pytest --cov=hydroutils   # With coverage
make test-cov                    # With HTML coverage report

# Code formatting and linting
uv run black .                   # Format code
uv run ruff check .              # Lint code
uv run ruff check --fix .        # Fix linting issues
make format                      # Format and lint together

# Type checking
uv run mypy hydroutils
make type-check

# Documentation
uv run mkdocs serve              # Serve docs locally
make docs-serve

# Build and release
uv run python -m build           # Build package
make build

Project Structure

hydroutils/
β”œβ”€β”€ hydroutils/
β”‚   β”œβ”€β”€ __init__.py              # Package initialization and exports
β”‚   β”œβ”€β”€ hydro_correct.py         # Data correction and quality control
β”‚   β”œβ”€β”€ hydro_event.py           # Hydrological event analysis
β”‚   β”œβ”€β”€ hydro_file.py            # File I/O and cloud storage
β”‚   β”œβ”€β”€ hydro_log.py             # Logging and console output
β”‚   β”œβ”€β”€ hydro_plot.py            # Visualization functions
β”‚   β”œβ”€β”€ hydro_stat.py            # Statistical analysis engine
β”‚   β”œβ”€β”€ hydro_time.py            # Time series utilities
β”‚   └── hydro_units.py           # Unit conversion and validation
β”œβ”€β”€ tests/                       # Comprehensive test suite
β”œβ”€β”€ docs/                        # MkDocs documentation
β”œβ”€β”€ pyproject.toml               # Modern Python project config
β”œβ”€β”€ Makefile                     # Development convenience commands
└── uv.lock                      # UV package manager lock file

🀝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Run tests and linting (make check-all)
  5. Commit your changes (git commit -m 'Add amazing feature')
  6. Push to the branch (git push origin feature/amazing-feature)
  7. Open a Pull Request

πŸ“– Documentation

Comprehensive documentation is available at https://OuyangWenyu.github.io/hydroutils, including:

  • API Reference: Complete function and class documentation
  • User Guide: Step-by-step tutorials and examples
  • Contributing Guide: Development setup and contribution guidelines
  • FAQ: Frequently asked questions and troubleshooting

πŸ—οΈ Requirements

  • Python: >=3.10
  • Core Dependencies: numpy, pandas, matplotlib, seaborn
  • Scientific Computing: scipy, HydroErr, numba
  • Visualization: cartopy (for geospatial plots)
  • Utilities: tqdm, rich, xarray, pint

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • HydroErr: For standardized hydrological error metrics
  • Cookiecutter: Project template from giswqs/pypackage
  • Scientific Python Ecosystem: NumPy, SciPy, Matplotlib, Pandas

πŸ“ž Support


Made with ❀️ for the hydrology community

About

A collection of util functions commonly used in hydrological modeling

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 5