This repository is the official implementation of Cryptocurrency Price Forecasting using Variational AutoEncoder with Versatile Quantile Modeling (CIKM, 2024).
NOTE: This repository supports WandB MLOps platform!
project homepage: https://crypto-vae.streamlit.app/
python main.py --model <model>
<model>
options:GLD_finite
,GLD_infinite
,LSQF
,ExpLog
- detailed configuration files can be found in
configs
folder
python main.py --model 'TLAE'
python main.py --model 'ProTran'
python benchmarks/deepar.py
python benchmarks/gp_copula.py
python benchmarks/mqrnn.py
python benchmarks/sqf_rnn.py
python benchmarks/tft.py
python benchmarks/benchmark_eval.py --model 'TFT' --tau 1
- detailed configuration files can be found in
configs
folder forTLAE
andProTran
- pretrained weights for
DeepAR
,GP-copula
,MQRNN
,SQF-RNN
,TFT
can be found in/assets
folder
- step-by-step evaluation for our proposed method:
infernce.py
- step-by-step evaluation for benchmark methods:
benchmarks/benchmark_eval.py
.
+-- assets (includes visualization results and pretrained weights of benchmark methods)
+-- benchmarks (includes codes for training benchmark methods)
+-- config (includes detailed configuration files)
+-- module
+-- inference.py
+-- main.py
+-- LICENSE
+-- README.md
@inproceedings{hong2024cryptocurrency,
title={Cryptocurrency Price Forecasting using Variational Autoencoder with Versatile Quantile Modeling},
author={Hong, Sungchul and An, Seunghwan and Jeon, Jong-June},
booktitle={Proceedings of the 33rd ACM International Conference on Information and Knowledge Management},
pages={4530--4537},
year={2024}
}