forked from lucidrains/alphafold3-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduce_uniprot_predictions_to_pdb.py
164 lines (133 loc) · 6.04 KB
/
reduce_uniprot_predictions_to_pdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import glob
import gzip
import os
import shutil
from collections import defaultdict
from datetime import datetime
from multiprocessing import Pool
import polars as pl
import timeout_decorator
from beartype.typing import Dict, Set, Tuple
from tqdm import tqdm
from alphafold3_pytorch.data import mmcif_parsing
from alphafold3_pytorch.utils.data_utils import extract_mmcif_metadata_field
PROCESS_ARCHIVE_MAX_SECONDS_PER_INPUT = 15
@timeout_decorator.timeout(PROCESS_ARCHIVE_MAX_SECONDS_PER_INPUT, use_signals=True)
def process_archive_with_timeout(archive_info: Tuple[str, Dict[str, Set[str]], str, str]):
"""Process a single archive file by extracting it to a given output directory and updating the
release date of the associated PDB entries.
:param archive_info: A tuple containing the path to the archive file, a dictionary mapping
UniProt accession IDs to PDB IDs, the path to the input PDB directory, and the path to the
output directory.
"""
archive, uniprot_to_pdb_id_mapping, input_pdb_dir, output_dir = archive_info
archive_accession_id = os.path.splitext(os.path.basename(archive))[0].split("-")[1]
output_subdir = os.path.join(output_dir, archive_accession_id)
pdb_release_date = datetime(1970, 1, 1)
for pdb_id in list(uniprot_to_pdb_id_mapping[archive_accession_id]):
pdb_id = pdb_id.lower()
pdb_group_code = pdb_id[1:3]
pdb_filepath = os.path.join(input_pdb_dir, pdb_group_code, f"{pdb_id}-assembly1.cif")
if os.path.exists(pdb_filepath):
try:
mmcif_object = mmcif_parsing.parse_mmcif_object(
filepath=pdb_filepath, file_id=f"{pdb_id}-assembly1.cif"
)
mmcif_release_date = extract_mmcif_metadata_field(mmcif_object, "release_date")
pdb_release_date = max(
pdb_release_date, datetime.strptime(mmcif_release_date, "%Y-%m-%d")
)
except Exception as e:
print(
f"An error occurred while processing PDB ID {pdb_id} associated with {pdb_filepath}: {e}. Skipping this prediction..."
)
return
if pdb_release_date == datetime(1970, 1, 1):
print(
f"Could not find PDB release date for {archive_accession_id}. Skipping this prediction..."
)
return
os.makedirs(output_subdir, exist_ok=True)
output_file = os.path.join(output_subdir, os.path.basename(archive).removesuffix(".gz"))
with gzip.open(archive, "rb") as f_in, open(output_file, "wb") as f_out:
shutil.copyfileobj(f_in, f_out)
with open(output_file, "r") as f:
lines = f.readlines()
new_lines = []
for line in lines:
if "_pdbx_audit_revision_history.revision_date" in line:
new_lines.append(line)
new_lines.append(f'"Structure model" 1 0 1 {pdb_release_date.date()} \n')
else:
new_lines.append(line)
with open(output_file, "w") as f:
f.writelines(new_lines)
def process_archive(archive_info: Tuple[str, Dict[str, Set[str]], str, str]):
"""Process a single archive file by extracting it to a given output directory and updating the
release date of the associated PDB entries.
:param archive_info: A tuple containing the path to the archive file, a dictionary mapping
UniProt accession IDs to PDB IDs, the path to the input PDB directory, and the path to the
output directory.
"""
try:
process_archive_with_timeout(archive_info)
except Exception as e:
print(
f"Processing of archive info {archive_info} took too long and was terminated due to: {e}. Skipping this prediction..."
)
def filter_pdb_files(
input_archive_dir: str,
input_pdb_dir: str,
output_dir: str,
uniprot_to_pdb_id_mapping_filepath: str,
):
"""Remove files from a given directory if they are not associated with a PDB entry, and extract
to a given output directory all remaining archive files while grouping them their UniProt
accession IDs."""
os.makedirs(output_dir, exist_ok=True)
uniprot_to_pdb_id_mapping_df = pl.read_csv(
uniprot_to_pdb_id_mapping_filepath,
has_header=False,
separator="\t",
new_columns=["uniprot_accession", "database", "pdb_id"],
)
uniprot_to_pdb_id_mapping_df.drop_in_place("database")
uniprot_to_pdb_id_mapping = defaultdict(set)
for row in uniprot_to_pdb_id_mapping_df.iter_rows():
uniprot_to_pdb_id_mapping[row[0]].add(row[1])
archives_to_keep = defaultdict(set)
archive_file_pattern = os.path.join(input_archive_dir, "*model_v4.cif.gz")
for archive_file in tqdm(
glob.glob(archive_file_pattern),
desc="Filtering prediction files by PDB ID association",
):
archive_accession_id = os.path.splitext(os.path.basename(archive_file))[0].split("-")[1]
if archive_accession_id in uniprot_to_pdb_id_mapping:
archives_to_keep[archive_accession_id].add(archive_file)
# Prepare the multiprocessing pool
pool = Pool(processes=12)
# Prepare arguments for each worker
archive_infos = [
(archive, uniprot_to_pdb_id_mapping, input_pdb_dir, output_dir)
for accession_id in archives_to_keep
for archive in archives_to_keep[accession_id]
]
# Process archives in parallel
for _ in tqdm(
pool.imap_unordered(process_archive, archive_infos),
total=len(archive_infos),
desc="Processing archives",
):
pass
pool.close()
pool.join()
if __name__ == "__main__":
input_archive_dir = os.path.join("data", "afdb_data", "unfiltered_train_mmcifs")
input_pdb_dir = os.path.join("data", "pdb_data", "train_mmcifs")
output_dir = os.path.join("data", "afdb_data", "train_mmcifs")
uniprot_to_pdb_id_mapping_filepath = os.path.join(
"data", "afdb_data", "data_caches", "uniprot_to_pdb_id_mapping.dat"
)
filter_pdb_files(
input_archive_dir, input_pdb_dir, output_dir, uniprot_to_pdb_id_mapping_filepath
)