forked from lucidrains/alphafold3-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_pdb_train_mmcifs.py
927 lines (838 loc) · 40.2 KB
/
cluster_pdb_train_mmcifs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
# %% [markdown]
# # Clustering AlphaFold 3 PDB Training Dataset
#
# For clustering AlphaFold 3's PDB training dataset, we follow the clustering procedure outlined in Abramson et al (2024).
#
# In order to reduce bias in the training and evaluation sets, clustering was performed on PDB chains and interfaces, as
# follows.
# • Chain-based clustering occur at 40% sequence homology for proteins, 100% homology for nucleic acids, 100%
# homology for peptides (<10 residues) and according to CCD identity for small molecules (i.e. only identical
# molecules share a cluster).
# • Chain-based clustering of polymers with modified residues is first done by mapping the modified residues to
# a standard residue using SCOP [23, 24] convention (https://github.com/biopython/biopython/
# blob/5ee5e69e649dbe17baefe3919e56e60b54f8e08f/Bio/Data/SCOPData.py). If the mod-
# ified residue could not be found as a mapping key or was mapped to a value longer than a single character, it was
# mapped to type unknown.
# • Interface-based clustering is a join on the cluster IDs of the constituent chains, such that interfaces I and J are
# in the same interface cluster C^interface only if their constituent chain pairs {I_1,I_2},{J_1,J_2} have the same chain
# cluster pairs {C_1^chain ,C_2^chain}.
# %%
import argparse
import glob
import json
import os
import subprocess
from concurrent.futures import ProcessPoolExecutor, as_completed
from beartype.typing import Dict, List, Literal, Optional, Set, Tuple, Union
import numpy as np
import polars as pl
from Bio.Data import PDBData
from Bio.PDB.NeighborSearch import NeighborSearch
from loguru import logger
from tqdm import tqdm
from alphafold3_pytorch.data import mmcif_parsing
from alphafold3_pytorch.tensor_typing import IntType, typecheck
from alphafold3_pytorch.utils.data_utils import RESIDUE_MOLECULE_TYPE, get_residue_molecule_type
from alphafold3_pytorch.utils.utils import exists, np_mode
# Constants
CHAIN_SEQUENCES = List[Dict[str, Dict[str, str]]]
CHAIN_INTERFACES = Dict[str, List[str]]
INTERFACE_CLUSTERS = Dict[str, str]
CLUSTERING_MOLECULE_TYPE = Literal["protein", "nucleic_acid", "peptide", "ligand", "unknown"]
PROTEIN_LETTERS_3TO1 = {k.strip(): v.strip() for k, v in PDBData.protein_letters_3to1.items()}
NUCLEIC_LETTERS_3TO1 = {k.strip(): v.strip() for k, v in PDBData.nucleic_letters_3to1.items()}
PROTEIN_LETTERS_3TO1_EXTENDED = {
k.strip(): v.strip() for k, v in PDBData.protein_letters_3to1_extended.items()
}
NUCLEIC_LETTERS_3TO1_EXTENDED = {
k.strip(): v.strip() for k, v in PDBData.nucleic_letters_3to1_extended.items()
}
PROTEIN_LETTERS_1TO3 = {k.strip(): v.strip() for k, v in PDBData.protein_letters_1to3.items()}
RNA_LETTERS_1TO3 = {
"A": "A",
"C": "C",
"G": "G",
"T": "U", # NOTE: This mapping is required for PDBs such as `41Od`
"U": "U",
}
DNA_LETTERS_1TO3 = {
"A": "DA",
"C": "DC",
"G": "DG",
"T": "DT",
"U": "DT", # NOTE: This mapping is present as a precaution based on outlier PDBs such as `410d`
}
# Helper functions
@typecheck
def convert_modified_residue_three_to_one(
residue_id: str, residue_mol_type: RESIDUE_MOLECULE_TYPE
) -> Tuple[str, RESIDUE_MOLECULE_TYPE]:
"""
Convert a three-letter amino acid, nucleotide, or CCD code to a one-letter code (if applicable).
Also return the chemically-specific molecule type of the residue.
NOTE: All unknown residues or unmappable modified residues (be they protein, RNA, or DNA) are
converted to the unknown residue type of the residue's chemical type (e.g., `N` for RNA).
"""
# NOTE: If a modified residue cannot be found as a mapping key
# or is mapped to a value longer than a single character, then
# it will be mapped to the corresponding unknown residue type.
is_modified_protein_residue = (
residue_mol_type == "protein"
and residue_id not in PROTEIN_LETTERS_3TO1
and residue_id in PROTEIN_LETTERS_3TO1_EXTENDED
and len(PROTEIN_LETTERS_3TO1_EXTENDED[residue_id]) == 1
)
is_modified_rna_residue = (
residue_mol_type == "rna"
and residue_id not in NUCLEIC_LETTERS_3TO1
and residue_id in NUCLEIC_LETTERS_3TO1_EXTENDED
and len(NUCLEIC_LETTERS_3TO1_EXTENDED[residue_id]) == 1
)
is_modified_dna_residue = (
residue_mol_type == "dna"
and residue_id not in NUCLEIC_LETTERS_3TO1
and residue_id in NUCLEIC_LETTERS_3TO1_EXTENDED
and len(NUCLEIC_LETTERS_3TO1_EXTENDED[residue_id]) == 1
)
# Map modified residues to their one-letter codes, if applicable
if any((is_modified_protein_residue, is_modified_rna_residue, is_modified_dna_residue)):
one_letter_mapped_residue = (
PROTEIN_LETTERS_3TO1_EXTENDED[residue_id]
if is_modified_protein_residue
else NUCLEIC_LETTERS_3TO1_EXTENDED[residue_id]
)
if is_modified_protein_residue:
mapped_residue = PROTEIN_LETTERS_1TO3[one_letter_mapped_residue]
elif is_modified_rna_residue:
mapped_residue = RNA_LETTERS_1TO3[one_letter_mapped_residue]
elif is_modified_dna_residue:
mapped_residue = DNA_LETTERS_1TO3[one_letter_mapped_residue]
else:
mapped_residue = residue_id
if residue_mol_type == "protein":
return (
(
PROTEIN_LETTERS_3TO1[mapped_residue]
if mapped_residue in PROTEIN_LETTERS_3TO1
else "X"
),
"protein",
)
elif residue_mol_type in {"rna", "dna"}:
return (
(
NUCLEIC_LETTERS_3TO1[mapped_residue]
if mapped_residue in NUCLEIC_LETTERS_3TO1
else "X"
),
("rna" if residue_mol_type == "rna" else "dna"),
)
else:
return mapped_residue, "ligand"
def parse_chain_sequences_and_interfaces_from_mmcif(
filepath: str,
assume_one_based_residue_ids: bool = False,
min_num_residues_for_protein_classification: int = 10,
interface_distance_threshold: float = 5.0,
) -> Tuple[Dict[str, str], Set[str]]:
"""
Parse an mmCIF file and return a dictionary mapping chain IDs
to sequences for all molecule types (i.e., proteins, rna, dna, peptides, ligands, etc.)
as well as a set of chain ID pairs denoting structural interfaces.
"""
assert filepath.endswith(".cif"), "The input file must be an mmCIF file."
file_id = os.path.splitext(os.path.basename(filepath))[0]
mmcif_object = mmcif_parsing.parse_mmcif_object(filepath, file_id)
model = mmcif_object.structure
# NOTE: After dataset filtering, only heavy (non-hydrogen) atoms remain in the structure
all_atoms = [atom for atom in model.get_atoms()]
neighbor_search = NeighborSearch(all_atoms)
sequences = {}
interface_chain_ids = set()
for chain in model:
one_letter_seq_tokens = []
token_molecule_types = []
for res_index, res in enumerate(chain):
# Convert each residue to a one-letter code if applicable
res_chem_comp = mmcif_object.chem_comp_details[chain.id][res_index]
res_id = res_chem_comp.id.strip()
res_mol_type = get_residue_molecule_type(res_chem_comp.type)
one_letter_residue, clustering_molecule_type = convert_modified_residue_three_to_one(
res_id, res_mol_type
)
if clustering_molecule_type == "ligand":
# NOTE: Since ligands are clustered based on their CCD codes,
# we can group same-CCD molecules in the same chain together
# as a single sequence
sequences[f"{chain.id}:{clustering_molecule_type}-{res_id}"] = one_letter_residue
else:
one_letter_seq_tokens.append(one_letter_residue)
token_molecule_types.append(clustering_molecule_type)
# Find all interfaces defined as pairs of chains with minimum heavy atom (i.e. non-hydrogen) separation less than 5 Å
for atom in res:
for neighbor in neighbor_search.search(
atom.coord, interface_distance_threshold, "R"
):
neighbor_chain_id = neighbor.get_parent().get_id()
if chain.id == neighbor_chain_id:
continue
# NOTE: We can only make this `ID - 1` assumption because each chain's residue IDs
# are 1-indexed after performing PDB dataset filtering. If clustering is being performed
# on another (i.e., non-PDB) dataset of mmCIF files, then these zero-based residue indices
# need to be identified alternatively (e.g., by performing list indexing on the neighboring
# chain's Residue objects).
if assume_one_based_residue_ids:
neighbor_res_index = neighbor.get_id()[1] - 1
else:
neighbor_res_index = list(model[neighbor_chain_id]).index(
neighbor
) # E.g., for non-PDB datasets
neighbor_res_chem_comp = mmcif_object.chem_comp_details[neighbor_chain_id][
neighbor_res_index
]
neighbor_res_id = neighbor_res_chem_comp.id.strip()
neighbor_res_mol_type = get_residue_molecule_type(neighbor_res_chem_comp.type)
_, neighbor_clustering_molecule_type = convert_modified_residue_three_to_one(
neighbor_res_id, neighbor_res_mol_type
)
molecule_index_postfix = (
f"-{res_id}" if clustering_molecule_type == "ligand" else ""
)
neighbor_molecule_index_postfix = (
f"-{neighbor_res_id}"
if neighbor_clustering_molecule_type == "ligand"
else ""
)
# Avoid adding duplicate interface chain pairs
atom_interface_key = (
f"{chain.id}:{clustering_molecule_type}{molecule_index_postfix}"
)
neighbor_interface_key = f"{neighbor_chain_id}:{neighbor_clustering_molecule_type}{neighbor_molecule_index_postfix}"
if f"{neighbor_interface_key}+{atom_interface_key}" not in interface_chain_ids:
interface_chain_ids.add(f"{atom_interface_key}+{neighbor_interface_key}")
if not one_letter_seq_tokens:
# NOTE: This indicates that the current chain consists of only ligand residues
continue
unique_token_molecule_types = set(token_molecule_types)
if len(unique_token_molecule_types) > 1:
# Handle cases where a chain contains multiple polymer molecule types, such as in PDB `5a0f`
molecule_type = np_mode(np.array(token_molecule_types))[0].item()
logger.warning(
f"More than one molecule type found (i.e., {unique_token_molecule_types}) in chain {chain.id} within the mmCIF file {filepath}."
f" Assigning the most common molecule type to the chain (i.e., {molecule_type}), and setting the type of all outlier residues to the unknown residue type (i.e., X)."
)
for token_index in range(len(one_letter_seq_tokens)):
if token_molecule_types[token_index] != molecule_type:
one_letter_seq_tokens[token_index] = "X"
else:
molecule_type = token_molecule_types[0]
if (
molecule_type == "protein"
and len(one_letter_seq_tokens) < min_num_residues_for_protein_classification
):
molecule_type = "peptide"
one_letter_seq = "".join(one_letter_seq_tokens)
sequences[f"{chain.id}:{molecule_type}"] = one_letter_seq
return sequences, interface_chain_ids
def parse_chain_sequences_and_interfaces_from_mmcif_file(
cif_filepath: str, assume_one_based_residue_ids: bool = False
) -> Tuple[str, Dict[str, str], Set[str]]:
"""Parse chain sequences and interfaces from an mmCIF file."""
structure_id = os.path.splitext(os.path.basename(cif_filepath))[0]
try:
chain_sequences, interface_chain_ids = parse_chain_sequences_and_interfaces_from_mmcif(
cif_filepath, assume_one_based_residue_ids=assume_one_based_residue_ids
)
return structure_id, chain_sequences, interface_chain_ids
except Exception as e:
logger.warning(
f"Failed to parse chain sequences and interfaces from mmCIF file '{cif_filepath}' due to: {e}"
)
return structure_id, {}, set()
@typecheck
def parse_chain_sequences_and_interfaces_from_mmcif_directory(
mmcif_dir: str, max_workers: int = 2, assume_one_based_residue_ids: bool = False
) -> Tuple[CHAIN_SEQUENCES, CHAIN_INTERFACES]:
"""
Parse all mmCIF files in a directory and return a list of dictionaries mapping chain IDs to sequences
as well as a dictionary mapping complex IDs to a list of chain ID pairs denoting structural interfaces.
"""
all_chain_sequences = []
all_interface_chain_ids = {}
mmcif_filepaths = list(glob.glob(os.path.join(mmcif_dir, "*", "*.cif")))
with ProcessPoolExecutor(max_workers=max_workers) as executor:
futures = {
executor.submit(
parse_chain_sequences_and_interfaces_from_mmcif_file,
cif_filepath,
assume_one_based_residue_ids,
): cif_filepath
for cif_filepath in mmcif_filepaths
}
for future in tqdm(
as_completed(futures),
total=len(futures),
desc="Parsing chain sequences and interfaces",
):
structure_id, chain_sequences, interface_chain_ids = future.result()
if chain_sequences:
all_chain_sequences.append({structure_id: chain_sequences})
all_interface_chain_ids[structure_id] = list(interface_chain_ids)
return all_chain_sequences, all_interface_chain_ids
@typecheck
def write_sequences_to_fasta(
all_chain_sequences: CHAIN_SEQUENCES,
fasta_filepath: str,
molecule_type: CLUSTERING_MOLECULE_TYPE,
interface_chain_ids: CHAIN_INTERFACES | None = None,
) -> List[str]:
"""Write sequences of a particular molecule type to a FASTA file, and return all molecule IDs."""
assert fasta_filepath.endswith(".fasta"), "The output file must be a FASTA file."
fasta_filepath = fasta_filepath.replace(".fasta", f"_{molecule_type}.fasta")
molecule_ids = []
with open(fasta_filepath, "w") as f:
for structure_chain_sequences in tqdm(
all_chain_sequences, desc=f"Writing {molecule_type} FASTA chain sequence file"
):
for structure_id, chain_sequences in structure_chain_sequences.items():
for chain_id, sequence in chain_sequences.items():
chain_id_, molecule_type_ = chain_id.split(":")
molecule_type_and_name = molecule_type_.split("-")
mol_type = (
molecule_type_and_name[0]
.replace("rna", "nucleic_acid")
.replace("dna", "nucleic_acid")
)
if mol_type == molecule_type:
molecule_index_postfix = (
f"-{molecule_type_and_name[1]}"
if len(molecule_type_and_name) == 2
else ""
)
molecule_id = f"{structure_id}{chain_id_}:{molecule_type_and_name[0]}{molecule_index_postfix}"
if exists(interface_chain_ids) and not any(
chain_id in interface_chain_id.split("+")
for interface_chain_id in interface_chain_ids[structure_id]
):
continue
mapped_sequence = (
sequence.replace("X", "N")
if molecule_type == "nucleic_acid"
else sequence
)
f.write(f">{molecule_id}\n{mapped_sequence}\n")
molecule_ids.append(molecule_id)
return molecule_ids
@typecheck
def extract_pdb_chain_and_molecule_ids_from_clustering_string(x: str) -> Tuple[str, str, str]:
"""Extract PDB, chain, and molecule IDs from a clustering output string."""
pdb_id = (
x.split(":")[0].split("-assembly1")[0] + "-assembly1"
if "-assembly1" in x
else x.split(":")[0][:4]
)
chain_id = x.split(":")[0].split("-assembly1")[1] if "assembly1" in x else x.split(":")[0][4:]
molecule_id = x.split(":")[1]
return pdb_id, chain_id, molecule_id
@typecheck
def cluster_sequences_using_mmseqs2(
input_filepath: str,
output_dir: str,
molecule_type: CLUSTERING_MOLECULE_TYPE,
min_seq_id: float = 0.5,
coverage: float = 0.8,
coverage_mode: Literal[0, 1, 2, 3] = 1,
extra_parameters: Optional[Dict[str, Union[int, float, str]]] = None,
) -> Dict[str, int]:
"""Run MMseqs2 on the input FASTA file and write the resulting clusters to a local output directory."""
assert input_filepath.endswith(".fasta"), "The input file must be a FASTA file."
input_filepath = input_filepath.replace(".fasta", f"_{molecule_type}.fasta")
output_db_filepath = os.path.join(output_dir, molecule_type, f"DB_{molecule_type}")
tmp_output_dir = os.path.join(output_dir, molecule_type, "tmp")
output_cluster_filepath = os.path.join(
output_dir, molecule_type, f"DB_{molecule_type}_cluster.tsv"
)
os.makedirs(os.path.join(output_dir, molecule_type), exist_ok=True)
assert os.path.isfile(input_filepath), f"Input file '{input_filepath}' does not exist."
# Cluster sequences
mmseqs_command = [
"mmseqs",
"easy-cluster",
input_filepath,
output_db_filepath,
tmp_output_dir,
"--min-seq-id",
str(min_seq_id),
"-c",
str(coverage),
"--cov-mode",
str(coverage_mode),
]
if extra_parameters:
for key, value in extra_parameters.items():
mmseqs_command.extend([key, str(value)])
subprocess.run(mmseqs_command)
assert os.path.isfile(
output_cluster_filepath
), f"Output cluster file '{output_cluster_filepath}' does not exist."
chain_cluster_mapping = pl.read_csv(
output_cluster_filepath,
separator="\t",
has_header=False,
new_columns=["cluster_rep", "cluster_member"],
)
chain_cluster_mapping.insert_column(
len(chain_cluster_mapping.columns),
chain_cluster_mapping.get_column("cluster_rep")
.cast(pl.Categorical)
.to_physical()
.rename("cluster_id"),
)
chain_cluster_mappings = dict(
zip(
chain_cluster_mapping.get_column("cluster_member"),
chain_cluster_mapping.get_column("cluster_id"),
)
)
# Cache chain cluster mappings to local (CSV) storage
local_chain_cluster_mapping = pl.DataFrame(
chain_cluster_mapping.get_column("cluster_member")
.map_elements(
extract_pdb_chain_and_molecule_ids_from_clustering_string, return_dtype=pl.List
)
.to_list(),
schema=["pdb_id", "chain_id", "molecule_id"],
orient="row",
)
local_chain_cluster_mapping.insert_column(
len(local_chain_cluster_mapping.columns),
chain_cluster_mapping.get_column("cluster_id"),
)
local_chain_cluster_mapping.write_csv(
os.path.join(output_dir, f"{molecule_type}_chain_cluster_mapping.csv")
)
return chain_cluster_mappings
@typecheck
def cluster_ligands_by_ccd_code(
all_chain_sequences: CHAIN_SEQUENCES, output_dir: str
) -> Dict[str, int]:
"""Cluster ligands based on their CCD codes and write the resulting clusters to a local output directory."""
# Parse the ligand sequences from all chain sequences, while clustering them based on their CCD codes
chain_cluster_mapping = {}
ccd_code_to_cluster_mapping = {}
for structure_chain_sequences in tqdm(
all_chain_sequences, desc="Clustering ligands by CCD code"
):
for structure_id, chain_sequences in structure_chain_sequences.items():
for chain_id, sequence in chain_sequences.items():
chain_id_, molecule_type_ = chain_id.split(":")
molecule_type_and_name = molecule_type_.split("-")
if molecule_type_and_name[0] == "ligand":
molecule_index_postfix = (
f"-{molecule_type_and_name[1]}" if len(molecule_type_and_name) == 2 else ""
)
if sequence in ccd_code_to_cluster_mapping:
cluster_id = ccd_code_to_cluster_mapping[sequence]
else:
cluster_id = len(ccd_code_to_cluster_mapping)
ccd_code_to_cluster_mapping[sequence] = cluster_id
chain_cluster_mapping[
f"{structure_id}{chain_id_}:{molecule_type_and_name[0]}{molecule_index_postfix}"
] = cluster_id
# Cache chain cluster mappings to local (CSV) storage
local_chain_cluster_mapping = pl.DataFrame(
[
(*extract_pdb_chain_and_molecule_ids_from_clustering_string(k), v)
for (k, v) in chain_cluster_mapping.items()
],
schema=["pdb_id", "chain_id", "molecule_id", "cluster_id"],
orient="row",
)
local_chain_cluster_mapping.write_csv(
os.path.join(output_dir, "ligand_chain_cluster_mapping.csv"),
)
return chain_cluster_mapping
@typecheck
def map_pdb_chain_id_to_chain_cluster_id(
pdb_chain_id: str,
molecule_id: str,
protein_chain_cluster_mapping: Dict[str, IntType],
nucleic_acid_chain_cluster_mapping: Dict[str, IntType],
peptide_chain_cluster_mapping: Dict[str, IntType],
ligand_chain_cluster_mapping: Dict[str, IntType],
) -> str:
"""Map a PDB chain ID and molecule ID to a chain cluster ID based on the chain's (majority) molecule type."""
if "protein" in pdb_chain_id and pdb_chain_id in protein_chain_cluster_mapping:
chain_cluster = f"{molecule_id}-cluster-{protein_chain_cluster_mapping[pdb_chain_id]}"
elif (
"protein" in pdb_chain_id
and pdb_chain_id.replace("protein", "peptide") in peptide_chain_cluster_mapping
):
# Based on (majority) chain molecule types, handle instances where
# a X-protein (or protein-X) interaction is actually a peptide interaction, e.g., PDB `148l`
chain_cluster = f"{molecule_id}-cluster-{peptide_chain_cluster_mapping[pdb_chain_id.replace('protein', 'peptide')]}"
elif (
"protein" in pdb_chain_id
and pdb_chain_id.replace("protein", "rna") in nucleic_acid_chain_cluster_mapping
):
# Based on (majority) chain molecule types, handle instances where
# a X-protein (or protein-X) interaction is actually a nucleic acid interaction, e.g., PDB `1b23`
chain_cluster = f"{molecule_id}-cluster-{nucleic_acid_chain_cluster_mapping[pdb_chain_id.replace('protein', 'rna')]}"
elif (
"protein" in pdb_chain_id
and pdb_chain_id.replace("protein", "dna") in nucleic_acid_chain_cluster_mapping
):
# Based on (majority) chain molecule types, handle instances where
# a X-protein (or protein-X) interaction is actually a nucleic acid interaction, e.g., PDB `1b23`
chain_cluster = f"{molecule_id}-cluster-{nucleic_acid_chain_cluster_mapping[pdb_chain_id.replace('protein', 'dna')]}"
elif (
"rna" in pdb_chain_id or "dna" in pdb_chain_id
) and pdb_chain_id in nucleic_acid_chain_cluster_mapping:
chain_cluster = f"{molecule_id}-cluster-{nucleic_acid_chain_cluster_mapping[pdb_chain_id]}"
elif (
"rna" in pdb_chain_id
and pdb_chain_id.replace("rna", "dna") in nucleic_acid_chain_cluster_mapping
):
# Based on (majority) chain molecule types, handle instances where
# a X-RNA (or RNA-X) interaction is actually a DNA interaction, e.g., PDB `216d`
chain_cluster = f"{molecule_id}-cluster-{nucleic_acid_chain_cluster_mapping[pdb_chain_id.replace('rna', 'dna')]}"
elif (
"dna" in pdb_chain_id
and pdb_chain_id.replace("dna", "rna") in nucleic_acid_chain_cluster_mapping
):
# Based on (majority) chain molecule types, handle instances where
# a X-DNA (or DNA-X) interaction is actually an RNA interaction, e.g., PDB `216d`
chain_cluster = f"{molecule_id}-cluster-{nucleic_acid_chain_cluster_mapping[pdb_chain_id.replace('dna', 'rna')]}"
elif (
"rna" in pdb_chain_id
and pdb_chain_id.replace("rna", "protein") in protein_chain_cluster_mapping
):
# Based on (majority) chain molecule types, handle instances where
# a X-nucleic acid (or nucleic acid-X) interaction is actually a protein interaction, e.g., PDB `3a1s`
chain_cluster = f"{molecule_id}-cluster-{protein_chain_cluster_mapping[pdb_chain_id.replace('rna', 'protein')]}"
elif (
"dna" in pdb_chain_id
and pdb_chain_id.replace("dna", "protein") in protein_chain_cluster_mapping
):
# Based on (majority) chain molecule types, handle instances where
# a X-nucleic acid (or nucleic acid-X) interaction is actually a protein interaction, e.g., PDB `3a1s`
chain_cluster = f"{molecule_id}-cluster-{protein_chain_cluster_mapping[pdb_chain_id.replace('dna', 'protein')]}"
elif (
"rna" in pdb_chain_id
and pdb_chain_id.replace("rna", "peptide") in peptide_chain_cluster_mapping
):
# Based on (majority) chain molecule types, handle instances where
# a X-nucleic acid (or nucleic acid-X) interaction is actually a peptide interaction, e.g., PDB `2aiz`
chain_cluster = f"{molecule_id}-cluster-{peptide_chain_cluster_mapping[pdb_chain_id.replace('rna', 'peptide')]}"
elif (
"dna" in pdb_chain_id
and pdb_chain_id.replace("dna", "peptide") in peptide_chain_cluster_mapping
):
# Based on (majority) chain molecule types, handle instances where
# a X-nucleic acid (or nucleic acid-X) interaction is actually a peptide interaction, e.g., PDB `2aiz`
chain_cluster = f"{molecule_id}-cluster-{peptide_chain_cluster_mapping[pdb_chain_id.replace('dna', 'peptide')]}"
elif "peptide" in pdb_chain_id and pdb_chain_id in peptide_chain_cluster_mapping:
chain_cluster = f"{molecule_id}-cluster-{peptide_chain_cluster_mapping[pdb_chain_id]}"
elif "ligand" in pdb_chain_id and pdb_chain_id in ligand_chain_cluster_mapping:
chain_cluster = f"{molecule_id}-cluster-{ligand_chain_cluster_mapping[pdb_chain_id]}"
else:
raise ValueError(f"Chain {pdb_chain_id} not found in any chain cluster mapping.")
return chain_cluster
@typecheck
def cluster_interfaces(
protein_chain_cluster_mapping: Dict[str, IntType],
nucleic_acid_chain_cluster_mapping: Dict[str, IntType],
peptide_chain_cluster_mapping: Dict[str, IntType],
ligand_chain_cluster_mapping: Dict[str, IntType],
interface_chain_ids: CHAIN_INTERFACES,
output_dir: str,
) -> INTERFACE_CLUSTERS:
"""Cluster interfaces based on the cluster IDs of the chains involved."""
interface_chains_cluster_mapping = {}
interface_clusters = {}
for pdb_id in tqdm(interface_chain_ids, desc="Clustering interfaces"):
for chain_id_pair in interface_chain_ids[pdb_id]:
chain_ids = chain_id_pair.split("+")
chain_clusters = []
for chain_id in chain_ids:
pdb_chain_id = f"{pdb_id}{chain_id}"
molecule_id = chain_id.split(":")[-1]
chain_clusters.append(
map_pdb_chain_id_to_chain_cluster_id(
pdb_chain_id,
molecule_id,
protein_chain_cluster_mapping,
nucleic_acid_chain_cluster_mapping,
peptide_chain_cluster_mapping,
ligand_chain_cluster_mapping,
)
)
# Ensure that each interface cluster is unique
if (
len(chain_clusters) == 2
and (chain_clusters[0], chain_clusters[1]) not in interface_chains_cluster_mapping
and (chain_clusters[1], chain_clusters[0]) not in interface_chains_cluster_mapping
):
# Assign a unique interface cluster ID as a join on the constituent chain cluster IDs,
# such that two interfaces I and J are in the same interface cluster C^interface only if
# their constituent chain pairs {I_1,I_2},{J_1,J_2} have the same chain cluster pairs {C_1^chain ,C_2^chain}.
interface_chains_cluster_mapping[(chain_clusters[0], chain_clusters[1])] = len(
interface_chains_cluster_mapping
)
elif len(chain_clusters) != 2:
raise ValueError(
f"Invalid number of chains in interface {chain_id_pair} for PDB ID {pdb_id}."
)
chain_cluster_0 = chain_clusters[0].split("-")[-1]
chain_cluster_1 = chain_clusters[1].split("-")[-1]
interface_cluster_mapping = (
interface_chains_cluster_mapping[(chain_clusters[1], chain_clusters[0])]
if (chain_clusters[1], chain_clusters[0]) in interface_chains_cluster_mapping
else interface_chains_cluster_mapping[(chain_clusters[0], chain_clusters[1])]
)
interface_clusters[
f"{pdb_id}~{chain_id_pair}"
] = f"{chain_cluster_0},{chain_cluster_1}:{interface_cluster_mapping}"
# Cache interface cluster mappings to local (CSV) storage
pl.DataFrame(
(
(
k.split("~")[0],
k.split("+")[0].split("~")[-1].split(":")[0],
k.split("+")[1].split("~")[-1].split(":")[0],
k.split("+")[0].split("~")[-1].split(":")[1],
k.split("+")[1].split("~")[-1].split(":")[1],
int(v.split(":")[0].split(",")[0]),
int(v.split(":")[0].split(",")[1]),
int(v.split(":")[1]),
)
for k, v in interface_clusters.items()
),
schema=[
"pdb_id",
"interface_chain_id_1",
"interface_chain_id_2",
"interface_molecule_id_1",
"interface_molecule_id_2",
"interface_chain_cluster_id_1",
"interface_chain_cluster_id_2",
"interface_cluster_id",
],
).write_csv(os.path.join(output_dir, "interface_cluster_mapping.csv"))
return interface_clusters
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Cluster chains and interfaces within the AlphaFold 3 PDB training dataset's filtered mmCIF files."
)
parser.add_argument(
"--mmcif_dir",
type=str,
default=os.path.join("data", "pdb_data", "train_mmcifs"),
help="Path to the input directory containing (filtered) mmCIF files.",
)
parser.add_argument(
"--output_dir",
type=str,
default=os.path.join("data", "pdb_data", "data_caches", "train_clusterings"),
help="Path to the output clustering directory.",
)
parser.add_argument(
"--clustering_filtered_pdb_dataset",
action="store_true",
help="Whether the clustering is being performed on a filtered PDB dataset.",
)
parser.add_argument(
"-n",
"--no_workers",
type=int,
default=16,
help="Number of workers to use for clustering.",
)
args = parser.parse_args()
# Validate input arguments
assert os.path.isdir(args.mmcif_dir), f"mmCIF directory '{args.mmcif_dir}' does not exist."
os.makedirs(args.output_dir, exist_ok=True)
# Determine paths for intermediate files
fasta_filepath = os.path.join(args.output_dir, "sequences.fasta")
# Attempt to load existing chain sequences and interfaces from local storage
if os.path.exists(
os.path.join(args.output_dir, "all_chain_sequences.json")
) and os.path.exists(os.path.join(args.output_dir, "interface_chain_ids.json")):
with open(os.path.join(args.output_dir, "all_chain_sequences.json"), "r") as f:
all_chain_sequences = json.load(f)
with open(os.path.join(args.output_dir, "interface_chain_ids.json"), "r") as f:
interface_chain_ids = json.load(f)
else:
# Parse all chain sequences and interfaces from mmCIF files
(
all_chain_sequences,
interface_chain_ids,
) = parse_chain_sequences_and_interfaces_from_mmcif_directory(
args.mmcif_dir,
max_workers=args.no_workers,
assume_one_based_residue_ids=args.clustering_filtered_pdb_dataset,
)
# Cache chain sequences and interfaces to local storage
with open(os.path.join(args.output_dir, "all_chain_sequences.json"), "w") as f:
json.dump(all_chain_sequences, f)
with open(os.path.join(args.output_dir, "interface_chain_ids.json"), "w") as f:
json.dump(interface_chain_ids, f)
# Attempt to load existing chain cluster mappings from local storage
protein_chain_cluster_mapping = {}
nucleic_acid_chain_cluster_mapping = {}
peptide_chain_cluster_mapping = {}
ligand_chain_cluster_mapping = {}
if os.path.exists(os.path.join(args.output_dir, "protein_chain_cluster_mapping.csv")):
protein_chain_cluster_mapping = pl.read_csv(
os.path.join(args.output_dir, "protein_chain_cluster_mapping.csv")
).with_columns(
pl.format("{}{}:{}", "pdb_id", "chain_id", "molecule_id").alias("combined_key")
)
protein_chain_cluster_mapping = dict(
zip(
protein_chain_cluster_mapping.get_column("combined_key"),
protein_chain_cluster_mapping.get_column("cluster_id"),
)
)
if os.path.exists(os.path.join(args.output_dir, "nucleic_acid_chain_cluster_mapping.csv")):
nucleic_acid_chain_cluster_mapping = pl.read_csv(
os.path.join(args.output_dir, "nucleic_acid_chain_cluster_mapping.csv")
).with_columns(
pl.format("{}{}:{}", "pdb_id", "chain_id", "molecule_id").alias("combined_key")
)
nucleic_acid_chain_cluster_mapping = dict(
zip(
nucleic_acid_chain_cluster_mapping.get_column("combined_key"),
nucleic_acid_chain_cluster_mapping.get_column("cluster_id"),
)
)
if os.path.exists(os.path.join(args.output_dir, "peptide_chain_cluster_mapping.csv")):
peptide_chain_cluster_mapping = pl.read_csv(
os.path.join(args.output_dir, "peptide_chain_cluster_mapping.csv")
).with_columns(
pl.format("{}{}:{}", "pdb_id", "chain_id", "molecule_id").alias("combined_key")
)
peptide_chain_cluster_mapping = dict(
zip(
peptide_chain_cluster_mapping.get_column("combined_key"),
peptide_chain_cluster_mapping.get_column("cluster_id"),
)
)
if os.path.exists(os.path.join(args.output_dir, "ligand_chain_cluster_mapping.csv")):
ligand_chain_cluster_mapping = pl.read_csv(
os.path.join(args.output_dir, "ligand_chain_cluster_mapping.csv")
).with_columns(
pl.format("{}{}:{}", "pdb_id", "chain_id", "molecule_id").alias("combined_key")
)
ligand_chain_cluster_mapping = dict(
zip(
ligand_chain_cluster_mapping.get_column("combined_key"),
ligand_chain_cluster_mapping.get_column("cluster_id"),
)
)
# Cluster sequences separately for each molecule type
if not protein_chain_cluster_mapping:
protein_molecule_ids = write_sequences_to_fasta(
all_chain_sequences, fasta_filepath, molecule_type="protein"
)
protein_chain_cluster_mapping = cluster_sequences_using_mmseqs2(
# Cluster proteins at 40% sequence homology
fasta_filepath,
args.output_dir,
molecule_type="protein",
min_seq_id=0.4,
coverage=0.8,
coverage_mode=0,
extra_parameters={
# force protein mode
"--dbtype": 1,
# cluster reassign improves clusters by reassigning sequences to the best cluster
# and fixes transitivity issues of the cascade clustering
"--cluster-reassign": 1,
},
)
if not nucleic_acid_chain_cluster_mapping:
nucleic_acid_molecule_ids = write_sequences_to_fasta(
all_chain_sequences, fasta_filepath, molecule_type="nucleic_acid"
)
nucleic_acid_chain_cluster_mapping = cluster_sequences_using_mmseqs2(
# Cluster nucleic acids at 100% sequence homology
fasta_filepath,
args.output_dir,
molecule_type="nucleic_acid",
min_seq_id=1.0,
coverage=0.8,
coverage_mode=0,
extra_parameters={
# force nucleotide mode
"--dbtype": 2,
# 7 or 8 should work best, something to test
"-k": 8,
# there is currently an issue in mmseqs2 with nucleotide search and spaced k-mers
"--spaced-kmer-mode": 0,
# see above
"--cluster-reassign": 1,
},
)
if not peptide_chain_cluster_mapping:
peptide_molecule_ids = write_sequences_to_fasta(
all_chain_sequences, fasta_filepath, molecule_type="peptide"
)
peptide_chain_cluster_mapping = cluster_sequences_using_mmseqs2(
# Cluster peptides at 100% sequence homology
fasta_filepath,
args.output_dir,
molecule_type="peptide",
min_seq_id=1.0,
coverage=0.8,
coverage_mode=0,
# some of these parameters are from the spacepharer optimized parameters
# these were for short CRISPR spacer recognition, so they should work well for arbitrary peptides
extra_parameters={
# force protein mode
"--dbtype": 1,
# spacepharer optimized parameters
"--gap-open": 16,
"--gap-extend": 2,
"--sub-mat": "VTML40.out",
# we would like to try using ungapped prefilter mode to avoid
# minimum consecutive k-mer match restrictions, but the cluster workflow doesn't expose this yet
# let's use a real small k-mer size instead
# "--prefilter-mode": 1,
"-k": 5,
"--spaced-kmer-mode": 0,
# Don't try suppresing FP hits since the peptides are too short
"--mask": 0,
"--comp-bias-corr": 0,
# let more things through the prefilter
"--min-ungapped-score": 5,
# Let's disable e-values as these are too short for reliable homology anyway
# The most we can do is to collapse nearly identical peptides
"-e": "inf",
# see above
"--cluster-reassign": 1,
},
)
if not ligand_chain_cluster_mapping:
ligand_chain_cluster_mapping = cluster_ligands_by_ccd_code(
# Cluster ligands based on their CCD codes (i.e., identical ligands share a cluster)
all_chain_sequences,
args.output_dir,
)
# Cluster interfaces based on the cluster IDs of the chains involved, and save the interface cluster mapping to local (CSV) storage
assert all(
(
protein_chain_cluster_mapping,
nucleic_acid_chain_cluster_mapping,
peptide_chain_cluster_mapping,
ligand_chain_cluster_mapping,
)
), "All molecule type-specific chain cluster mappings must be available to cluster interfaces."
cluster_interfaces(
protein_chain_cluster_mapping,
nucleic_acid_chain_cluster_mapping,
peptide_chain_cluster_mapping,
ligand_chain_cluster_mapping,
interface_chain_ids,
args.output_dir,
)