-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bf51a13
commit 298ff86
Showing
1 changed file
with
32 additions
and
87 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,108 +1,53 @@ | ||
import ee | ||
import mercury as mr | ||
|
||
class LandsatInitialization: | ||
class SentinelInitialization: | ||
def __init__(self, m, date_one, date_two, max_cloud_covering): | ||
self.m = m | ||
self.date_one = date_one | ||
self.date_two = date_two | ||
self.max_cloud_covering = max_cloud_covering | ||
|
||
self.ls7bands = mr.MultiSelect(label="Select LandSat 7 SR bands", | ||
value=['SR_B3', 'SR_B2', 'SR_B1'], | ||
choices=['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']) | ||
def sen2msisr_init(self): | ||
self.sen2msibands = mr.MultiSelect(label="Select Sentinel 2 MSI (TOA/SR) bands", | ||
value=['B2', 'B3', 'B4'], | ||
choices=['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9', 'B11', 'B12']) | ||
|
||
self.ls8bands = mr.MultiSelect(label="Select LandSat 8 TOA/RAW bands", | ||
value=['B4', 'B3', 'B2'], | ||
choices=['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'B11']) | ||
sen2msi_sr = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED').filterDate(str(self.date_one.value),str(self.date_two.value)).filter(ee.Filter.lte('CLOUDY_PIXEL_PERCENTAGE', self.max_cloud_covering.value)) | ||
composite_sr = sen2msi_sr.median() | ||
|
||
self.ls8srbands = mr.MultiSelect(label="Select LandSat 8 SR bands", | ||
value=['SR_B4', 'SR_B3', 'SR_B2'], | ||
choices=['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']) | ||
|
||
self.ls9bands = mr.MultiSelect(label="Select LandSat 9 SR bands", | ||
value=['SR_B4', 'SR_B3', 'SR_B2'], | ||
choices=['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']) | ||
|
||
self.ls9rawbands = mr.MultiSelect(label="Select LandSat 9 RAW/TOA bands", | ||
value=['B4', 'B3', 'B2'], | ||
choices=['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'B11']) | ||
|
||
def ls7sr_init(self): | ||
ls7 = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2").filterDate(str(self.date_one.value), str(self.date_two.value)).filter( | ||
ee.Filter.lte('CLOUD_COVER', self.max_cloud_covering.value)) | ||
vis_ls7 = {'bands': self.ls7bands.value} | ||
self.m.addLayer(ls7, vis_ls7, "LandSat 7 SR", True, 0.7) | ||
|
||
def ls8toa_init(self): | ||
ls8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA").filterDate(str(self.date_one.value), str(self.date_two.value)).filter( | ||
ee.Filter.lte('CLOUD_COVER', self.max_cloud_covering.value)) | ||
vis_ls8 = { | ||
'bands': self.ls8bands.value, | ||
'min': 0.0, | ||
'max': 0.4, | ||
vis_sen2sr = { | ||
'bands': self.sen2msibands.value, | ||
'min': 0, | ||
'max': 3000, | ||
'gamma': 1.4, | ||
} | ||
self.m.addLayer(ls8, vis_ls8, 'LandSat 8 TOA') | ||
|
||
def ls8rawtc_init(self): | ||
ls8raw = ee.ImageCollection('LANDSAT/LC09/C02/T1').filterDate(str(self.date_one.value), str(self.date_two.value)).filter( | ||
ee.Filter.lte('CLOUD_COVER', self.max_cloud_covering.value)) | ||
ls8raw_tc = ls8raw.select(self.ls8bands.value) | ||
vis_ls8raw_tc = { | ||
min: 0.0, | ||
max: 30000.0, | ||
} | ||
self.m.addLayer(ls8raw_tc, vis_ls8raw_tc, "LandSat 8 RAW") | ||
self.m.addLayer(composite_sr, vis_sen2sr, 'Sentinel 2 MSI SR') | ||
|
||
def ls8sr_init(self): | ||
ls8sr = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2').filterDate(str(self.date_one.value), | ||
str(self.date_two.value)).filter( | ||
ee.Filter.lte('CLOUD_COVER', self.max_cloud_covering.value)) | ||
vis_ls8sr = { | ||
'bands': self.ls8srbands.value, | ||
min: 0.0, | ||
max: 0.3, | ||
} | ||
self.m.addLayer(ls8sr, vis_ls8sr, 'LandSat 8 SR') | ||
|
||
def ls9_init(self): | ||
def apply_scale_factors(image): | ||
opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2) | ||
thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0) | ||
return image.addBands(opticalBands, None, True).addBands(thermalBands, None, True) | ||
def sen2msitoa_init(self): | ||
self.sen2msibands = mr.MultiSelect(label="Select Sentinel 2 MSI (TOA/SR) bands", | ||
value=['B2', 'B3', 'B4'], | ||
choices=['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9', 'B11', 'B12']) | ||
|
||
collection = ee.ImageCollection('LANDSAT/LC09/C02/T1_L2').filterDate(str(self.date_one.value), | ||
str(self.date_two.value)).filter( | ||
ee.Filter.lte('CLOUD_COVER', self.max_cloud_covering.value)) | ||
sen2msi_toa = ee.ImageCollection('COPERNICUS/S2_HARMONIZED').filterDate(str(self.date_one.value), str(self.date_two.value)).filter(ee.Filter.lte('CLOUDY_PIXEL_PERCENTAGE', self.max_cloud_covering.value)) | ||
composite_toa = sen2msi_toa.median() | ||
|
||
median = collection.median() | ||
ls9 = apply_scale_factors(median) | ||
|
||
vis_ls9 = { | ||
'bands': self.ls9bands.value, | ||
'min': 0.0, | ||
'max': 0.3, | ||
vis_sen2toa = { | ||
'bands': self.sen2msibands.value, | ||
'min': 0, | ||
'max': 3000, | ||
'gamma': 1.4, | ||
} | ||
self.m.addLayer(ls9, vis_ls9, 'LandSat 9 SR') | ||
|
||
self.m.addLayer(composite_toa, vis_sen2toa, 'Sentinel 2 MSI TOA') | ||
|
||
def ls9rawtc_init(self): | ||
ls9raw = ee.ImageCollection("LANDSAT/LC09/C02/T2").filterDate(str(self.date_one.value), str(self.date_two.value)).filter( | ||
ee.Filter.lte('CLOUD_COVER', self.max_cloud_covering.value)) | ||
ls9raw_tc = ls9raw.select(self.ls9rawbands.value) | ||
vis_ls9raw_tc = { | ||
'min': 0.0, | ||
'max': 30000.0, | ||
def sen5pc_init(self): | ||
sen5pc = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_CLOUD").select('cloud_fraction').filterDate(str(self.date_one.value),str(self.date_two.value)) | ||
vis_sen5pc = { | ||
min: 0, | ||
max: 0.95, | ||
'palette': ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red'] | ||
} | ||
self.m.addLayer(ls9raw_tc, vis_ls9raw_tc, 'LandSat 9 RAW') | ||
|
||
def ls9toatc_init(self): | ||
ls9toa = ee.ImageCollection('LANDSAT/LC09/C02/T1_TOA').filterDate(str(self.date_one.value), | ||
str(self.date_two.value)).filter( | ||
ee.Filter.lte('CLOUD_COVER', self.max_cloud_covering.value)) | ||
ls9toa_tc = ls9toa.select(self.ls9rawbands.value) | ||
vis_ls9toa_tc = { | ||
min: 0.0, | ||
max: 0.4, | ||
} | ||
self.m.addLayer(ls9toa_tc, vis_ls9toa_tc, 'LandSat 9 TOA') | ||
self.m.addLayer(sen5pc, vis_sen5pc, 'Sentinel 5P Cloud') |