-
Notifications
You must be signed in to change notification settings - Fork 21
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Drivers/FPGA/DFL - Intel PAC N3000 missing modules select #22
base: master
Are you sure you want to change the base?
Conversation
When adding the Intel PAC N3000 Nios interface a lot of modules that it depend on did not get selected. UIO_DFL, MFD_INTEL_M10_BMC_CORE, MFD_INTEL_M10_BMC_SPI, SENSORS_INTEL_M10_BMC_HWMON, SPI_ALTERA, FPGA_DFL_FME, FPGA_DFL_FME_MGR, FPGA_DFL_FME_REGION, FPGA_DFL_FME_BRIDGE, FPGA_DFL_AFU, FPGA_DFL_PCI, ALTERA_FREEZE_BRIDGE, FPGA_M10_BMC_SEC_UPDATE, ALTERA_PR_IP_CORE, FPGA_MGR_ALTERA_CVP, FPGA_MGR_ALTERA_PS_SPI
Fixed Tabs, thanx
WIP: The driver does not show linkstatus, retimer versions Error: fpgainfo uses direct hacking on the regmap for SPI, which requires root access. This driver could potential fix that issue. Moved the driver to FPGA and tried my best to fix issues due to old patch.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks @hwspeedy for your contribution! Your patch appears to be based on [RFC,4/6] ethernet: m10-retimer: add support for retimers on Intel MAX 10 BMC, which was later resubmitted as [RESEND PATCH 2/2] misc: add support for retimers interfaces on Intel MAX 10 BMC. I am not familiar with the history of the patch to explain why it was not included upstream.
For some background on the methodology, we don't submit to the master
branch of this repository, which is the latest unmodified upstream commit upon which our development branch, fpga-ofs-dev
is based (currently v6.7-rc1
). Contributions are usually submitted to the fpga-ofs-dev-*-lts
branch, where *
is the latest supported upstream LTS version. From there, changes are synced to the fpga-ofs-dev
branch by the linux-dfl maintainers, and eventually sent upstream. Please see the Linux DFL wiki for details on the branches.
As noted above, I am not familiar with the details yet, but maybe you could start by detailing your particular use case. Which functionality is working for you using the latest commit in fpga-ofs-dev-6.1-lts
, and which isn't?
select UIO_DFL | ||
select MFD_INTEL_M10_BMC_CORE | ||
select MFD_INTEL_M10_BMC_SPI | ||
select SENSORS_INTEL_M10_BMC_HWMON | ||
select SPI_ALTERA | ||
select FPGA_DFL_FME | ||
select FPGA_DFL_FME_MGR | ||
select FPGA_DFL_FME_REGION | ||
select FPGA_DFL_FME_BRIDGE | ||
select FPGA_DFL_AFU | ||
select FPGA_DFL_PCI | ||
select ALTERA_FREEZE_BRIDGE | ||
select FPGA_M10_BMC_SEC_UPDATE | ||
select FPGA_M10_BMC_RETIMER | ||
select ALTERA_PR_IP_CORE | ||
select FPGA_MGR_ALTERA_CVP | ||
select FPGA_MGR_ALTERA_PS_SPI | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
select
should not be used to express dependencies in general since
select should be used with care. select will force a symbol to a value without visiting the dependencies. By abusing select you are able to select a symbol FOO even if FOO depends on BAR that is not set. In general use select only for non-visible symbols (no prompts anywhere) and for symbols with no dependencies. That will limit the usefulness but on the other hand avoid the illegal configurations all over.
So then one might ask why not add these dependencies using depends on
? If you take a look at dfl-n3000-nios.c
, note how its minimal dependencies, FPGA_DFL
and REGMAP
, provide symbols used by the module, e.g., __dfl_driver_register()
(through module_dfl_driver()
) and regmap_read()
, respectively. With only these dependencies selected, the dfl-n3000-nios
module should load successfully since its symbols are satisfied. The dependencies you specified above may be useful to exploit the full functionality of the driver, but they are not needed to load the driver.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank you very much for your feedback.
Here are my 5 cents to DFL/OPAE and what I think need to happen for OFS success.
State of OFS - DFL/OPAE.
DFL contains a bunch of modules and almost no-one understands it.
Partial reconfiguration (PR) is a messy business – keeping part of the FPGA running while stalling another part and changing that. Isolation bridges for freezing the registers towards the running part, ensuring that the running part do not use the part that is being changed and the other way around, when loading the new part.
Why do you have to partition in special way – that is known only by the FPGA manufacture – but it has to do with chains used to configure the FPGA. For Arria 10 FPGA it is keep it slim and wide. The schemes are different for Xilinx chips – more like Stratix. The PR needs to be compiled for exactly what is running – loading something else is a crash?
So that is why the FPGA loading is validating - that could be Kernel or BMC. When a FPGA part is running it would be nice to could verify who made this part and if it is valid.
A simple way – upload known good image, another way is to check public/private keys. Security is important both for data centers, companies and consumers and the implementations need maturity - open source is quite good at that.
But all of this does not make entirely sense to most kernel maintainers/users – its ugly hardware solutions mostly used because the PCIe interface, embedded CPU or memory in FPGA needs to continue running while we update or replace a function.
So DFL and OPAE is trying to address this situation – but it is also seams messy.
Looking at the linux-fpga patchworks board - it seams Redhat as maintainer mostly gave up and I see why.
What is this? How does it benefit Linux? Where is going? Is it really open source?
My experience
I have a couple of Intel FPGA cards and installs them in a machine. Nothing works – no drivers.
Hacking the kernel and adding the Intel PAC n3000 card and finding the OPAE in the OFS gives a little life but no flashing LED yet.
Now you need to debug the entire DFL and Intel PAC n3000 private to discover lots of missing modules. Then add these – more life and mostly running as root – only a retimer module is missing.
Trying to get it to work as an user on the PC – Trouble again – PHY are accessed trough the kernel debug interface on the regmaps – Nice new feature by the way. But this leaves the driver incomplete and probably why the PAC n3000V is not working at 10G instead of the 25G, when the FPGA is made for 10G but the retimers are still 25G.
When we look at the FPGA and OFS to setup the retimers you end up needing a missing BMC source and FPGA source. But as OFS says on the webpage - you can get this package by contacting Intel.
FAE manager at Arrow was not able to get this package.
I need it to change the messy retimer thing with SPI bridge in both directions along with removing, what I believe is a CVE security problem – The fast Core Cache IP, but still have the BMC with Powerup seq, temp, overheating protection, FPGA loading, etc.
Can you get the package consisting of BMC controller RTL+FW+qsf and FPGA RTL bridge part for me?
Back to the open source idea, which has bought the world the Linux we know.
So Intel wants to be in the kernel that runs all data centers and seams to be contributing to open source – but where are the Xilinx PAC/NAC cards?
My 5 cents:
- DFL needs to be more user friendly and more complete, clear in the direction it is heading.
- DFL should embrace FW/FPGA developers of functions with a nice platform – the community effort made by AMD and Intel will pay back – There is a long way to reduce Cuda – OFS? Community?
- DFL needs to have lots of Intel and AMD FPGA cards – not just the PAC/NAC cards also a couple of other examples to enable the community.
- DFL should not be for data centers only – it should be for all developers of other FPGA products – like PicoEVB, Aller A7, etc.
- DFL should use standards already made in the Linux kernel – eg. use .dtb binary blobs in the FPGA instead of just a PR loading chain.
- DFL loading and security should be open sources so that all developers can reuse the same framework and add more solutions.
- DFL matters - if the same hardware can be different drivers - which is the case with FPGA solutions PAC/NAC or just a PCIe FPGA card - DFL could be the answer?
If the above succeeds so does Intel and AMD FPGA and we get more FPGA developers in the world.
Please share you comments and also let me know if I can get the above package, thanx.
commit 79d72c6 upstream. When configuring a hugetlb filesystem via the fsconfig() syscall, there is a possible NULL dereference in hugetlbfs_fill_super() caused by assigning NULL to ctx->hstate in hugetlbfs_parse_param() when the requested pagesize is non valid. E.g: Taking the following steps: fd = fsopen("hugetlbfs", FSOPEN_CLOEXEC); fsconfig(fd, FSCONFIG_SET_STRING, "pagesize", "1024", 0); fsconfig(fd, FSCONFIG_CMD_CREATE, NULL, NULL, 0); Given that the requested "pagesize" is invalid, ctxt->hstate will be replaced with NULL, losing its previous value, and we will print an error: ... ... case Opt_pagesize: ps = memparse(param->string, &rest); ctx->hstate = h; if (!ctx->hstate) { pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); return -EINVAL; } return 0; ... ... This is a problem because later on, we will dereference ctxt->hstate in hugetlbfs_fill_super() ... ... sb->s_blocksize = huge_page_size(ctx->hstate); ... ... Causing below Oops. Fix this by replacing cxt->hstate value only when then pagesize is known to be valid. kernel: hugetlbfs: Unsupported page size 0 MB kernel: BUG: kernel NULL pointer dereference, address: 0000000000000028 kernel: #PF: supervisor read access in kernel mode kernel: #PF: error_code(0x0000) - not-present page kernel: PGD 800000010f66c067 P4D 800000010f66c067 PUD 1b22f8067 PMD 0 kernel: Oops: 0000 [#1] PREEMPT SMP PTI kernel: CPU: 4 PID: 5659 Comm: syscall Tainted: G E 6.8.0-rc2-default+ #22 5a47c3fef76212addcc6eb71344aabc35190ae8f kernel: Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017 kernel: RIP: 0010:hugetlbfs_fill_super+0xb4/0x1a0 kernel: Code: 48 8b 3b e8 3e c6 ed ff 48 85 c0 48 89 45 20 0f 84 d6 00 00 00 48 b8 ff ff ff ff ff ff ff 7f 4c 89 e7 49 89 44 24 20 48 8b 03 <8b> 48 28 b8 00 10 00 00 48 d3 e0 49 89 44 24 18 48 8b 03 8b 40 28 kernel: RSP: 0018:ffffbe9960fcbd48 EFLAGS: 00010246 kernel: RAX: 0000000000000000 RBX: ffff9af5272ae780 RCX: 0000000000372004 kernel: RDX: ffffffffffffffff RSI: ffffffffffffffff RDI: ffff9af555e9b000 kernel: RBP: ffff9af52ee66b00 R08: 0000000000000040 R09: 0000000000370004 kernel: R10: ffffbe9960fcbd48 R11: 0000000000000040 R12: ffff9af555e9b000 kernel: R13: ffffffffa66b86c0 R14: ffff9af507d2f400 R15: ffff9af507d2f400 kernel: FS: 00007ffbc0ba4740(0000) GS:ffff9b0bd7000000(0000) knlGS:0000000000000000 kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 kernel: CR2: 0000000000000028 CR3: 00000001b1ee0000 CR4: 00000000001506f0 kernel: Call Trace: kernel: <TASK> kernel: ? __die_body+0x1a/0x60 kernel: ? page_fault_oops+0x16f/0x4a0 kernel: ? search_bpf_extables+0x65/0x70 kernel: ? fixup_exception+0x22/0x310 kernel: ? exc_page_fault+0x69/0x150 kernel: ? asm_exc_page_fault+0x22/0x30 kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10 kernel: ? hugetlbfs_fill_super+0xb4/0x1a0 kernel: ? hugetlbfs_fill_super+0x28/0x1a0 kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10 kernel: vfs_get_super+0x40/0xa0 kernel: ? __pfx_bpf_lsm_capable+0x10/0x10 kernel: vfs_get_tree+0x25/0xd0 kernel: vfs_cmd_create+0x64/0xe0 kernel: __x64_sys_fsconfig+0x395/0x410 kernel: do_syscall_64+0x80/0x160 kernel: ? syscall_exit_to_user_mode+0x82/0x240 kernel: ? do_syscall_64+0x8d/0x160 kernel: ? syscall_exit_to_user_mode+0x82/0x240 kernel: ? do_syscall_64+0x8d/0x160 kernel: ? exc_page_fault+0x69/0x150 kernel: entry_SYSCALL_64_after_hwframe+0x6e/0x76 kernel: RIP: 0033:0x7ffbc0cb87c9 kernel: Code: 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 97 96 0d 00 f7 d8 64 89 01 48 kernel: RSP: 002b:00007ffc29d2f388 EFLAGS: 00000206 ORIG_RAX: 00000000000001af kernel: RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ffbc0cb87c9 kernel: RDX: 0000000000000000 RSI: 0000000000000006 RDI: 0000000000000003 kernel: RBP: 00007ffc29d2f3b0 R08: 0000000000000000 R09: 0000000000000000 kernel: R10: 0000000000000000 R11: 0000000000000206 R12: 0000000000000000 kernel: R13: 00007ffc29d2f4c0 R14: 0000000000000000 R15: 0000000000000000 kernel: </TASK> kernel: Modules linked in: rpcsec_gss_krb5(E) auth_rpcgss(E) nfsv4(E) dns_resolver(E) nfs(E) lockd(E) grace(E) sunrpc(E) netfs(E) af_packet(E) bridge(E) stp(E) llc(E) iscsi_ibft(E) iscsi_boot_sysfs(E) intel_rapl_msr(E) intel_rapl_common(E) iTCO_wdt(E) intel_pmc_bxt(E) sb_edac(E) iTCO_vendor_support(E) x86_pkg_temp_thermal(E) intel_powerclamp(E) coretemp(E) kvm_intel(E) rfkill(E) ipmi_ssif(E) kvm(E) acpi_ipmi(E) irqbypass(E) pcspkr(E) igb(E) ipmi_si(E) mei_me(E) i2c_i801(E) joydev(E) intel_pch_thermal(E) i2c_smbus(E) dca(E) lpc_ich(E) mei(E) ipmi_devintf(E) ipmi_msghandler(E) acpi_pad(E) tiny_power_button(E) button(E) fuse(E) efi_pstore(E) configfs(E) ip_tables(E) x_tables(E) ext4(E) mbcache(E) jbd2(E) hid_generic(E) usbhid(E) sd_mod(E) t10_pi(E) crct10dif_pclmul(E) crc32_pclmul(E) crc32c_intel(E) polyval_clmulni(E) ahci(E) xhci_pci(E) polyval_generic(E) gf128mul(E) ghash_clmulni_intel(E) sha512_ssse3(E) sha256_ssse3(E) xhci_pci_renesas(E) libahci(E) ehci_pci(E) sha1_ssse3(E) xhci_hcd(E) ehci_hcd(E) libata(E) kernel: mgag200(E) i2c_algo_bit(E) usbcore(E) wmi(E) sg(E) dm_multipath(E) dm_mod(E) scsi_dh_rdac(E) scsi_dh_emc(E) scsi_dh_alua(E) scsi_mod(E) scsi_common(E) aesni_intel(E) crypto_simd(E) cryptd(E) kernel: Unloaded tainted modules: acpi_cpufreq(E):1 fjes(E):1 kernel: CR2: 0000000000000028 kernel: ---[ end trace 0000000000000000 ]--- kernel: RIP: 0010:hugetlbfs_fill_super+0xb4/0x1a0 kernel: Code: 48 8b 3b e8 3e c6 ed ff 48 85 c0 48 89 45 20 0f 84 d6 00 00 00 48 b8 ff ff ff ff ff ff ff 7f 4c 89 e7 49 89 44 24 20 48 8b 03 <8b> 48 28 b8 00 10 00 00 48 d3 e0 49 89 44 24 18 48 8b 03 8b 40 28 kernel: RSP: 0018:ffffbe9960fcbd48 EFLAGS: 00010246 kernel: RAX: 0000000000000000 RBX: ffff9af5272ae780 RCX: 0000000000372004 kernel: RDX: ffffffffffffffff RSI: ffffffffffffffff RDI: ffff9af555e9b000 kernel: RBP: ffff9af52ee66b00 R08: 0000000000000040 R09: 0000000000370004 kernel: R10: ffffbe9960fcbd48 R11: 0000000000000040 R12: ffff9af555e9b000 kernel: R13: ffffffffa66b86c0 R14: ffff9af507d2f400 R15: ffff9af507d2f400 kernel: FS: 00007ffbc0ba4740(0000) GS:ffff9b0bd7000000(0000) knlGS:0000000000000000 kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 kernel: CR2: 0000000000000028 CR3: 00000001b1ee0000 CR4: 00000000001506f0 Link: https://lkml.kernel.org/r/20240130210418.3771-1-osalvador@suse.de Fixes: 3202198 ("hugetlbfs: Convert to fs_context") Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Muchun Song <muchun.song@linux.dev> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When the skb is reorganized during esp_output (!esp->inline), the pages coming from the original skb fragments are supposed to be released back to the system through put_page. But if the skb fragment pages are originating from a page_pool, calling put_page on them will trigger a page_pool leak which will eventually result in a crash. This leak can be easily observed when using CONFIG_DEBUG_VM and doing ipsec + gre (non offloaded) forwarding: BUG: Bad page state in process ksoftirqd/16 pfn:1451b6 page:00000000de2b8d32 refcount:0 mapcount:0 mapping:0000000000000000 index:0x1451b6000 pfn:0x1451b6 flags: 0x200000000000000(node=0|zone=2) page_type: 0xffffffff() raw: 0200000000000000 dead000000000040 ffff88810d23c000 0000000000000000 raw: 00000001451b6000 0000000000000001 00000000ffffffff 0000000000000000 page dumped because: page_pool leak Modules linked in: ip_gre gre mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink iptable_nat nf_nat xt_addrtype br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core overlay zram zsmalloc fuse [last unloaded: mlx5_core] CPU: 16 PID: 96 Comm: ksoftirqd/16 Not tainted 6.8.0-rc4+ #22 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x36/0x50 bad_page+0x70/0xf0 free_unref_page_prepare+0x27a/0x460 free_unref_page+0x38/0x120 esp_ssg_unref.isra.0+0x15f/0x200 esp_output_tail+0x66d/0x780 esp_xmit+0x2c5/0x360 validate_xmit_xfrm+0x313/0x370 ? validate_xmit_skb+0x1d/0x330 validate_xmit_skb_list+0x4c/0x70 sch_direct_xmit+0x23e/0x350 __dev_queue_xmit+0x337/0xba0 ? nf_hook_slow+0x3f/0xd0 ip_finish_output2+0x25e/0x580 iptunnel_xmit+0x19b/0x240 ip_tunnel_xmit+0x5fb/0xb60 ipgre_xmit+0x14d/0x280 [ip_gre] dev_hard_start_xmit+0xc3/0x1c0 __dev_queue_xmit+0x208/0xba0 ? nf_hook_slow+0x3f/0xd0 ip_finish_output2+0x1ca/0x580 ip_sublist_rcv_finish+0x32/0x40 ip_sublist_rcv+0x1b2/0x1f0 ? ip_rcv_finish_core.constprop.0+0x460/0x460 ip_list_rcv+0x103/0x130 __netif_receive_skb_list_core+0x181/0x1e0 netif_receive_skb_list_internal+0x1b3/0x2c0 napi_gro_receive+0xc8/0x200 gro_cell_poll+0x52/0x90 __napi_poll+0x25/0x1a0 net_rx_action+0x28e/0x300 __do_softirq+0xc3/0x276 ? sort_range+0x20/0x20 run_ksoftirqd+0x1e/0x30 smpboot_thread_fn+0xa6/0x130 kthread+0xcd/0x100 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x31/0x50 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork_asm+0x11/0x20 </TASK> The suggested fix is to introduce a new wrapper (skb_page_unref) that covers page refcounting for page_pool pages as well. Cc: stable@vger.kernel.org Fixes: 6a5bcd8 ("page_pool: Allow drivers to hint on SKB recycling") Reported-and-tested-by: Anatoli N.Chechelnickiy <Anatoli.Chechelnickiy@m.interpipe.biz> Reported-by: Ian Kumlien <ian.kumlien@gmail.com> Link: https://lore.kernel.org/netdev/CAA85sZvvHtrpTQRqdaOx6gd55zPAVsqMYk_Lwh4Md5knTq7AyA@mail.gmail.com Signed-off-by: Dragos Tatulea <dtatulea@nvidia.com> Reviewed-by: Mina Almasry <almasrymina@google.com> Reviewed-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
…uddy pages When I did memory failure tests recently, below panic occurs: page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00 flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff) raw: 06fffe0000000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000009 00000000ffffffff 0000000000000000 page dumped because: VM_BUG_ON_PAGE(!PageBuddy(page)) ------------[ cut here ]------------ kernel BUG at include/linux/page-flags.h:1009! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:__del_page_from_free_list+0x151/0x180 RSP: 0018:ffffa49c90437998 EFLAGS: 00000046 RAX: 0000000000000035 RBX: 0000000000000009 RCX: ffff8dd8dfd1c9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff8dd8dfd1c9c0 RBP: ffffd901233b8000 R08: ffffffffab5511f8 R09: 0000000000008c69 R10: 0000000000003c15 R11: ffffffffab5511f8 R12: ffff8dd8fffc0c80 R13: 0000000000000001 R14: ffff8dd8fffc0c80 R15: 0000000000000009 FS: 00007ff916304740(0000) GS:ffff8dd8dfd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055eae50124c8 CR3: 00000008479e0000 CR4: 00000000000006f0 Call Trace: <TASK> __rmqueue_pcplist+0x23b/0x520 get_page_from_freelist+0x26b/0xe40 __alloc_pages_noprof+0x113/0x1120 __folio_alloc_noprof+0x11/0xb0 alloc_buddy_hugetlb_folio.isra.0+0x5a/0x130 __alloc_fresh_hugetlb_folio+0xe7/0x140 alloc_pool_huge_folio+0x68/0x100 set_max_huge_pages+0x13d/0x340 hugetlb_sysctl_handler_common+0xe8/0x110 proc_sys_call_handler+0x194/0x280 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xc2/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7ff916114887 RSP: 002b:00007ffec8a2fd78 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000055eae500e350 RCX: 00007ff916114887 RDX: 0000000000000004 RSI: 000055eae500e390 RDI: 0000000000000003 RBP: 000055eae50104c0 R08: 0000000000000000 R09: 000055eae50104c0 R10: 0000000000000077 R11: 0000000000000246 R12: 0000000000000004 R13: 0000000000000004 R14: 00007ff916216b80 R15: 00007ff916216a00 </TASK> Modules linked in: mce_inject hwpoison_inject ---[ end trace 0000000000000000 ]--- And before the panic, there had an warning about bad page state: BUG: Bad page state in process page-types pfn:8cee00 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00 flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff) page_type: 0xffffff7f(buddy) raw: 06fffe0000000000 ffffd901241c0008 ffffd901240f8008 0000000000000000 raw: 0000000000000000 0000000000000009 00000000ffffff7f 0000000000000000 page dumped because: nonzero mapcount Modules linked in: mce_inject hwpoison_inject CPU: 8 PID: 154211 Comm: page-types Not tainted 6.9.0-rc4-00499-g5544ec3178e2-dirty #22 Call Trace: <TASK> dump_stack_lvl+0x83/0xa0 bad_page+0x63/0xf0 free_unref_page+0x36e/0x5c0 unpoison_memory+0x50b/0x630 simple_attr_write_xsigned.constprop.0.isra.0+0xb3/0x110 debugfs_attr_write+0x42/0x60 full_proxy_write+0x5b/0x80 vfs_write+0xcd/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xc2/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f189a514887 RSP: 002b:00007ffdcd899718 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f189a514887 RDX: 0000000000000009 RSI: 00007ffdcd899730 RDI: 0000000000000003 RBP: 00007ffdcd8997a0 R08: 0000000000000000 R09: 00007ffdcd8994b2 R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffdcda199a8 R13: 0000000000404af1 R14: 000000000040ad78 R15: 00007f189a7a5040 </TASK> The root cause should be the below race: memory_failure try_memory_failure_hugetlb me_huge_page __page_handle_poison dissolve_free_hugetlb_folio drain_all_pages -- Buddy page can be isolated e.g. for compaction. take_page_off_buddy -- Failed as page is not in the buddy list. -- Page can be putback into buddy after compaction. page_ref_inc -- Leads to buddy page with refcnt = 1. Then unpoison_memory() can unpoison the page and send the buddy page back into buddy list again leading to the above bad page state warning. And bad_page() will call page_mapcount_reset() to remove PageBuddy from buddy page leading to later VM_BUG_ON_PAGE(!PageBuddy(page)) when trying to allocate this page. Fix this issue by only treating __page_handle_poison() as successful when it returns 1. Link: https://lkml.kernel.org/r/20240523071217.1696196-1-linmiaohe@huawei.com Fixes: ceaf8fb ("mm, hwpoison: skip raw hwpoison page in freeing 1GB hugepage") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When adding the Intel PAC N3000 Nios interface a lot of modules that it depend on did not get selected.
UIO_DFL, MFD_INTEL_M10_BMC_CORE, MFD_INTEL_M10_BMC_SPI, SENSORS_INTEL_M10_BMC_HWMON, SPI_ALTERA, FPGA_DFL_FME, FPGA_DFL_FME_MGR, FPGA_DFL_FME_REGION, FPGA_DFL_FME_BRIDGE, FPGA_DFL_AFU, FPGA_DFL_PCI, ALTERA_FREEZE_BRIDGE, FPGA_M10_BMC_SEC_UPDATE, ALTERA_PR_IP_CORE, FPGA_MGR_ALTERA_CVP, FPGA_MGR_ALTERA_PS_SPI