forked from trilinos/Trilinos
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
267 additions
and
1 deletion.
There are no files selected for viewing
7 changes: 7 additions & 0 deletions
7
packages/anasazi/tpetra/test/GeneralizedDavidson/CMakeLists.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
257 changes: 257 additions & 0 deletions
257
packages/anasazi/tpetra/test/GeneralizedDavidson/cxx_main_lap.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
// @HEADER | ||
// *********************************************************************** | ||
// | ||
// Anasazi: Block Eigensolvers Package | ||
// Copyright 2004 Sandia Corporation | ||
// | ||
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation, | ||
// the U.S. Government retains certain rights in this software. | ||
// | ||
// Redistribution and use in source and binary forms, with or without | ||
// modification, are permitted provided that the following conditions are | ||
// met: | ||
// | ||
// 1. Redistributions of source code must retain the above copyright | ||
// notice, this list of conditions and the following disclaimer. | ||
// | ||
// 2. Redistributions in binary form must reproduce the above copyright | ||
// notice, this list of conditions and the following disclaimer in the | ||
// documentation and/or other materials provided with the distribution. | ||
// | ||
// 3. Neither the name of the Corporation nor the names of the | ||
// contributors may be used to endorse or promote products derived from | ||
// this software without specific prior written permission. | ||
// | ||
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY | ||
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE | ||
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | ||
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
// | ||
// Questions? Contact Michael A. Heroux ([email protected]) | ||
// | ||
// *********************************************************************** | ||
// @HEADER | ||
// | ||
// This test is for GeneralizedDavidson solving a standard (Ax=xl) Hermitian | ||
// eigenvalue problem where the operator (A) is the 1D finite-differenced Laplacian | ||
// operator. | ||
|
||
#include "AnasaziConfigDefs.hpp" | ||
#include "AnasaziTypes.hpp" | ||
|
||
#include "AnasaziTpetraAdapter.hpp" | ||
#include "AnasaziBasicEigenproblem.hpp" | ||
#include "AnasaziGeneralizedDavidsonSolMgr.hpp" | ||
#include <Teuchos_CommandLineProcessor.hpp> | ||
|
||
#include <Tpetra_Core.hpp> | ||
#include <Tpetra_CrsMatrix.hpp> | ||
|
||
|
||
template <typename ScalarType> | ||
int run(int argc, char *argv[]) { | ||
|
||
using ST = typename Tpetra::MultiVector<ScalarType>::scalar_type; | ||
using LO = typename Tpetra::MultiVector<>::local_ordinal_type; | ||
using GO = typename Tpetra::MultiVector<>::global_ordinal_type; | ||
using NT = typename Tpetra::MultiVector<>::node_type; | ||
|
||
using SCT = typename Teuchos::ScalarTraits<ScalarType>; | ||
using MT = typename SCT::magnitudeType; | ||
|
||
using OP = Tpetra::Operator<ST,LO,GO,NT>; | ||
using MV = Tpetra::MultiVector<ST,LO,GO,NT>; | ||
using OPT = Anasazi::OperatorTraits<ST,MV,OP>; | ||
using MVT = Anasazi::MultiVecTraits<ST,MV>; | ||
|
||
using tmap_t = Tpetra::Map<LO,GO,NT>; | ||
using tcrsmatrix_t = Tpetra::CrsMatrix<ST,LO,GO,NT>; | ||
|
||
using Teuchos::RCP; | ||
using Teuchos::rcp; | ||
using Teuchos::tuple; | ||
using std::cout; | ||
using std::endl; | ||
|
||
const ST ONE = SCT::one(); | ||
|
||
Tpetra::ScopeGuard tpetraScope (&argc,&argv); | ||
RCP<const Teuchos::Comm<int> > comm = Tpetra::getDefaultComm (); | ||
|
||
const int MyPID = comm->getRank (); | ||
const int NumImages = comm->getSize (); | ||
|
||
bool testFailed; | ||
bool verbose = false; | ||
bool debug = false; | ||
std::string which("LM"); | ||
int nev = 5; | ||
int blockSize = 3; | ||
MT tol = 1.0e-6; | ||
int maxRestarts = 25; | ||
int maxDim = 50; | ||
|
||
Teuchos::CommandLineProcessor cmdp(false,true); | ||
cmdp.setOption("verbose","quiet",&verbose,"Print messages and results."); | ||
cmdp.setOption("debug","nodebug",&debug,"Print debugging information."); | ||
cmdp.setOption("sort",&which,"Targetted eigenvalues (SM or LM)."); | ||
cmdp.setOption("nev",&nev,"Number of eigenvalues to compute."); | ||
cmdp.setOption("blockSize",&blockSize,"Block size for the algorithm."); | ||
cmdp.setOption("maxRestarts",&maxRestarts,"Number of restarts allowed."); | ||
|
||
if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) { | ||
return -1; | ||
} | ||
if (debug) verbose = true; | ||
|
||
if (MyPID == 0) { | ||
cout << Anasazi::Anasazi_Version() << endl << endl; | ||
} | ||
|
||
// -- Set finite difference grid | ||
const int nx = 10; | ||
int dim = nx * nx; | ||
|
||
// create map | ||
RCP<const tmap_t> map = rcp (new tmap_t(dim,0,comm)); | ||
RCP<tcrsmatrix_t> K = rcp (new tcrsmatrix_t(map, 4)); | ||
int base = MyPID*nx; | ||
if (MyPID != NumImages-1) { | ||
for (int i=0; i<nx; ++i) { | ||
K->insertGlobalValues(static_cast<GO>(base+i ), tuple<GO>(base+i ), tuple<ST>( 2)); | ||
K->insertGlobalValues(static_cast<GO>(base+i ), tuple<GO>(base+i+1), tuple<ST>(-1)); | ||
K->insertGlobalValues(static_cast<GO>(base+i+1), tuple<GO>(base+i ), tuple<ST>(-1)); | ||
K->insertGlobalValues(static_cast<GO>(base+i+1), tuple<GO>(base+i+1), tuple<ST>( 2)); | ||
} | ||
} | ||
else { | ||
for (int i=0; i<nx-1; ++i) { | ||
K->insertGlobalValues(static_cast<GO>(base+i ), tuple<GO>(base+i ), tuple<ST>( 2)); | ||
K->insertGlobalValues(static_cast<GO>(base+i ), tuple<GO>(base+i+1), tuple<ST>(-1)); | ||
K->insertGlobalValues(static_cast<GO>(base+i+1), tuple<GO>(base+i ), tuple<ST>(-1)); | ||
K->insertGlobalValues(static_cast<GO>(base+i+1), tuple<GO>(base+i+1), tuple<ST>( 2)); | ||
} | ||
} | ||
K->fillComplete(); | ||
|
||
// Create initial vectors | ||
RCP<MV> ivec = rcp (new MV (map,blockSize)); | ||
ivec->randomize (); | ||
|
||
// Create eigenproblem | ||
RCP<Anasazi::BasicEigenproblem<ST,MV,OP> > problem = | ||
rcp (new Anasazi::BasicEigenproblem<ST,MV,OP> (K, ivec)); | ||
// | ||
// Inform the eigenproblem that the operator K is symmetric | ||
problem->setHermitian (true); | ||
// | ||
// Set the number of eigenvalues requested | ||
problem->setNEV (nev); | ||
// | ||
// Inform the eigenproblem that you are done passing it information | ||
bool boolret = problem->setProblem (); | ||
if (! boolret) { | ||
if (MyPID == 0) { | ||
cout << "Anasazi::BasicEigenproblem::SetProblem() returned with error." << endl | ||
<< "End Result: TEST FAILED" << endl; | ||
} | ||
return -1; | ||
} | ||
|
||
// Set verbosity level | ||
int verbosity = Anasazi::Errors + Anasazi::Warnings + Anasazi::FinalSummary + Anasazi::TimingDetails; | ||
if (verbose) { | ||
verbosity += Anasazi::IterationDetails; | ||
} | ||
if (debug) { | ||
verbosity += Anasazi::Debug; | ||
} | ||
|
||
// Eigensolver parameters | ||
// | ||
// Create parameter list to pass into the solver manager | ||
Teuchos::ParameterList MyPL; | ||
MyPL.set( "Verbosity", verbosity ); | ||
MyPL.set( "Which", which ); | ||
MyPL.set( "Maximum Subspace Dimension", maxDim ); | ||
MyPL.set( "Block Size", blockSize ); | ||
MyPL.set( "Maximum Restarts", maxRestarts ); | ||
MyPL.set( "Convergence Tolerance", tol ); | ||
// | ||
// Create the solver manager | ||
Anasazi::GeneralizedDavidsonSolMgr<ST,MV,OP> MySolverMgr(problem, MyPL); | ||
|
||
// Solve the problem to the specified tolerances or length | ||
Anasazi::ReturnType returnCode = MySolverMgr.solve(); | ||
testFailed = false; | ||
if (returnCode != Anasazi::Converged) { | ||
testFailed = true; | ||
} | ||
|
||
// Get the eigenvalues and eigenvectors from the eigenproblem | ||
Anasazi::Eigensolution<ST,MV> sol = problem->getSolution(); | ||
RCP<MV> evecs = sol.Evecs; | ||
int numev = sol.numVecs; | ||
|
||
if (numev > 0) { | ||
std::ostringstream os; | ||
os.setf(std::ios::scientific, std::ios::floatfield); | ||
os.precision(6); | ||
|
||
// Compute the direct residual | ||
std::vector<MT> normV( numev ); | ||
Teuchos::SerialDenseMatrix<int,ST> T (numev, numev); | ||
for (int i = 0; i < numev; ++i) { | ||
T(i,i) = sol.Evals[i].realpart; | ||
} | ||
RCP<MV> Kvecs = MVT::Clone( *evecs, numev ); | ||
|
||
OPT::Apply( *K, *evecs, *Kvecs ); | ||
|
||
MVT::MvTimesMatAddMv( -ONE, *evecs, T, ONE, *Kvecs ); | ||
MVT::MvNorm( *Kvecs, normV ); | ||
|
||
os << "Direct residual norms computed in Tpetra_GeneralizedDavidson_lap_test.exe" << endl | ||
<< std::setw(20) << "Eigenvalue" << std::setw(20) << "Residual " << endl | ||
<< "----------------------------------------" << endl; | ||
for (int i=0; i<numev; i++) { | ||
if ( SCT::magnitude(sol.Evals[i].realpart) != SCT::zero() ) { | ||
normV[i] = SCT::magnitude(normV[i]/sol.Evals[i].realpart); | ||
} | ||
os << std::setw(20) << sol.Evals[i].realpart << std::setw(20) << normV[i] << endl; | ||
if ( normV[i] > tol ) { | ||
testFailed = true; | ||
} | ||
} | ||
if (MyPID==0) { | ||
cout << endl << os.str() << endl; | ||
} | ||
} | ||
|
||
if (testFailed) { | ||
if (MyPID==0) { | ||
cout << "End Result: TEST FAILED" << endl; | ||
} | ||
return -1; | ||
} | ||
// | ||
// Default return value | ||
// | ||
if (MyPID==0) { | ||
cout << "End Result: TEST PASSED" << endl; | ||
} | ||
return 0; | ||
|
||
} | ||
|
||
int main(int argc, char *argv[]) { | ||
return run<double>(argc,argv); | ||
// run<float>(argc,argv); | ||
} |