Skip to content

Nakul24-1/Predicting_MnA-main

Repository files navigation

Using a Global Corporations Knowledge Graph to Predict Mergers and Acquisitions

Project Description

Developed a Knowledge GraphDB with ~50k global corporations. Data extracted using SPARQL to query WikiData, WikiMedia’s massive Semantic Triplestore (~91m triples). Example Schema: (Company)--[size, location, industry]--(Company). Goal is to predict Mergers and Acquisitions using link prediction ML algorithms from metadata and graph embeddings (Node2Vec). Example prediction: (Company)--[ACQUIRED]--(Company)

Project Status

  • Write Wikidata Sparql Queries for global corporations and corp-to-corp acquisition relationships
  • Build/Run extraction and cleaning of data using Wikidata API
  • Build/Run ETL process to prepare CSVs for Neo4j GraphDB Node and Edge Ingestion
  • Run actual ingestion with pre-processed data
  • Inspect and verify ingestion
  • Peform Graph analytics exploratory data analysis (still important for ML even in Graph!)
  • Test Graph Database embedding models and research more graph native link prediction algos
  • Formalize ML approach and record performance
  • Clean repo and publish project

Project Tools

  • Python
    • sparql_config
    • Pandas
    • JSON
    • MultiThreading
    • NetworkX
    • TensorFlow
    • Sklearn
    • Plotly
  • Neo4j
    • Cypher
  • Docker base images
    • Neo4j
  • Sparql
  • Wikidata

Publication

Installation and Running (not ready yet)

git clone git.repo.com
python installation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published