- README.md: Main documentation file.
- Data Files:
data/davis/folds/test_fold_setting1.txt
,train_fold_setting1.txt
;Y
,ligands_can.txt
,proteins.txt
data/kiba/folds/test_fold_setting1.txt
,train_fold_setting1.txt
;Y
,ligands_can.txt
,proteins.txt
data/bindingdb/folds/test_fold_setting1.txt
,train_fold_setting1.txt
;Y
,ligands_can.txt
,proteins.txt
- Source Codes:
create_data.py
: Script to create data in PyTorch format.utils.py
: IncludesTestbedDataset
for data creation and performance measures.training.py
: Script to train and test the GraphDTAx model.- Model Implementations:
models/enhanced_gatgcn.py
models/enhanced_gat.py
models/SAGEConv.py
models/GPSConv.py
-
Install Required Libraries:
- PyTorch Geometric, RDKit, and other dependencies. Use the following commands:
conda create -n geometric python=3 conda activate geometric conda install -y -c conda-forge rdkit conda install pytorch torchvision cudatoolkit -c pytorch pip install torch-scatter==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html pip install torch-sparse==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html pip install torch-cluster==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html pip install torch-spline-conv==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html pip install torch-geometric
-
Generate Data Files:
- Activate the environment and run the data creation script:
conda activate geometric python create_data.py
- This will generate CSV files (
kiba_train.csv
,kiba_test.csv
,davis_train.csv
,davis_test.csv
,bindingdb_test.csv
,bindingdb_train.csv
) and save them in thedata/
directory. It also prepares.pt
files for PyTorch.
-
Model Training and Testing:
- Use the following command to train models and test their performance:
conda activate geometric python training.py 0 0 0
-
Parameters:
- CUDA device index (
0
for 'cuda:0',1
for 'cuda:1'). Adjust thecuda_name
in the script based on your system configuration.
- CUDA device index (
-
The script returns model files (e.g.,
model_GraphSAGENet_davis.model
) and result files (e.g.,result_GraphSAGENet_davis.csv
) representing the best MSE achieved during the training.
Follow these steps to set up and run the GraphDTAx model training and testing using the provided scripts and data. Ensure all dependencies are installed correctly to avoid any issues during the execution of the scripts."# GraphDTAx"