Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable ADD ID to work with CPU/GPU both #479

Merged
merged 7 commits into from
Feb 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions nemo_curator/modules/add_id.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,9 @@ def __call__(self, dataset: DocumentDataset) -> DocumentDataset:
return self._add_id_ordered(dataset)

def _add_id_fast(self, dataset: DocumentDataset) -> DocumentDataset:
meta = dataset.df.dtypes.to_dict()
meta = dataset.df._meta.copy()
meta[self.id_field] = "string"
meta[self.id_field] = meta[self.id_field].astype("string")

partition_zero_padding = count_digits(dataset.df.npartitions)
id_df = dataset.df.map_partitions(
Expand All @@ -59,12 +60,14 @@ def _add_id_fast_partition(self, partition, global_padding, partition_info=None)
for local_id in range(len(partition))
]
partition[self.id_field] = id_column
partition[self.id_field] = partition[self.id_field].astype("string")

return partition

def _add_id_ordered(self, dataset: DocumentDataset) -> DocumentDataset:
original_meta = dataset.df.dtypes.to_dict()
original_meta = dataset.df._meta.copy()
original_meta[self.id_field] = "string"
original_meta[self.id_field] = original_meta[self.id_field].astype("string")
delayed_dataset = dataset.df.to_delayed()

parition_lengths = [0]
Expand Down
3 changes: 2 additions & 1 deletion nemo_curator/scripts/add_id.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
def main(args):
client = get_client(**ArgumentHelper.parse_client_args(args))

backend = "cudf" if args.device == "gpu" else "pandas"
output_dir = expand_outdir_and_mkdir(args.output_data_dir)
files = get_all_files_paths_under(args.input_data_dir)
if args.shuffle:
Expand All @@ -36,7 +37,7 @@ def main(args):

dataset = DocumentDataset(
read_data(
files, file_type=args.input_file_type, backend="pandas", add_filename=True
files, file_type=args.input_file_type, backend=backend, add_filename=True
)
)
add_id = nemo_curator.AddId(
Expand Down
41 changes: 32 additions & 9 deletions tests/test_add_id.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,26 +18,37 @@

import nemo_curator as nc
from nemo_curator.datasets import DocumentDataset
from nemo_curator.utils.import_utils import gpu_only_import, is_unavailable

cudf = gpu_only_import("cudf")
is_cudf_available = not is_unavailable(cudf)

def list_to_dataset(documents, col_name="text", npartitions=2):

def list_to_dataset(documents, col_name="text", npartitions=2, backend="pandas"):
data = {col_name: documents}
pdf = pd.DataFrame(data)

return DocumentDataset(dd.from_pandas(pdf, npartitions=npartitions))
ddf = dd.from_pandas(pdf, npartitions=npartitions)
if backend == "cudf" and is_unavailable(cudf):
raise ImportError("cuDF is not installed or importable.")
ddf = ddf.to_backend(backend)
return DocumentDataset(ddf)


@pytest.fixture
def single_partition_dataset():
@pytest.fixture(params=["pandas", pytest.param("cudf", marks=pytest.mark.gpu)])
def single_partition_dataset(request):
return list_to_dataset(
["First", "Second", "Third", "Fourth", "Fifth"], npartitions=1
["First", "Second", "Third", "Fourth", "Fifth"],
npartitions=1,
backend=request.param,
)


@pytest.fixture
def two_partition_dataset():
@pytest.fixture(params=["pandas", pytest.param("cudf", marks=pytest.mark.gpu)])
def two_partition_dataset(request):
return list_to_dataset(
["First", "Second", "Third", "Fourth", "Fifth"], npartitions=2
["First", "Second", "Third", "Fourth", "Fifth"],
npartitions=2,
backend=request.param,
)


Expand All @@ -56,6 +67,8 @@ def test_basic_id(self, single_partition_dataset):
"doc_id-0000000004",
]
)
if is_cudf_available and isinstance(actual_ids, cudf.Series):
actual_ids = actual_ids.to_pandas()

assert all(
expected_ids == actual_ids
Expand All @@ -75,6 +88,8 @@ def test_two_partitions(self, two_partition_dataset):
"doc_id-0000000004",
]
)
if is_cudf_available and isinstance(actual_ids, cudf.Series):
actual_ids = actual_ids.to_pandas()

assert all(
expected_ids == actual_ids
Expand All @@ -95,6 +110,8 @@ def test_id_prefix(self, two_partition_dataset):
f"{id_prefix}-0000000004",
]
)
if is_cudf_available and isinstance(actual_ids, cudf.Series):
actual_ids = actual_ids.to_pandas()

assert all(
expected_ids == actual_ids
Expand All @@ -115,6 +132,8 @@ def test_start_index(self, two_partition_dataset):
"doc_id-0000000017",
]
)
if is_cudf_available and isinstance(actual_ids, cudf.Series):
actual_ids = actual_ids.to_pandas()

assert all(
expected_ids == actual_ids
Expand All @@ -134,6 +153,8 @@ def test_fast_id_single_partition(self, single_partition_dataset):
"doc_id-40",
]
)
if is_cudf_available and isinstance(actual_ids, cudf.Series):
actual_ids = actual_ids.to_pandas()

assert all(
expected_ids == actual_ids
Expand All @@ -153,6 +174,8 @@ def test_fast_id_two_partitions(self, two_partition_dataset):
"doc_id-11",
]
)
if is_cudf_available and isinstance(actual_ids, cudf.Series):
actual_ids = actual_ids.to_pandas()

assert all(
expected_ids == actual_ids
Expand Down