Releases: NSAPH-Software/CRE
Releases · NSAPH-Software/CRE
Release ver0.2.7
v0.2.6
v0.2.5
Added
- Add (vanilla) Stability Selection (without Error Control).
max_ruleshyper parameters for max rules filtering.- Uncertainty Quantification in estimation by bootstrapping.
Bhyper-parameter,subsamplehyper-parameter.rules(implicit form) in cre() function return.- predict() function for ITE estimation via CRE.
Changed
- Type
stability_selectionbinary -> string ('no','vanilla','error_control'). - Unify
ntrees_gbmhyper-parameter andntrees_gbmhyper-parameter in
ntreeshyper-parameter. - In rules generation retrieve decision rules also from internal nodes, and not
just from terminal nodes. ite_method_dis,ite_method_infmethod-parameter ->ite_method.ps_method_dis,ps_method_infmethod-parameter ->learner_ps.oreg_method_dis,oreg_method_infmethod-parameter ->learner_y.
Removed
max_nodeshyper-parameter.- Remove rules generation by Generalized Boosted Regression.
replacehyper-parameter.penalty_rlhyper-parameter.t_pvaluehyper-parameter.ite_predfrom cre() function return.
Bug fixes
- Error saving covariates name in CRE result when using
intervention_vars.
v0.2.4
v0.2.3
v0.2.2
v0.2.1
v0.2.0
Changed
offsetmethod-parameter -> hyper-parameterestimate_ite_poissonfunction ->estimate_ite_tpoissonmax_dacayhyper-parameter ->t_decay.interpret_select_rulesfunction ->interpret_rules.generate_causal_rulesfunction ->discover_rules.discover_causal_rulesfunction ->select_rules.offset_namemethod parameter ->offset.- Hyper and method parameters are no more required arguments for
cre. creobject: added parameters and ite estimation.
Added
- Synthetic data set with 1 or 3 rules (
generate_cre_dataset). - S-Learner (
slearner) method for ITE estimation. - T-Learner (
tlearner) method for ITE estimation. - X-Learner (
xlearner) method for ITE estimation. - Rules Selection description in
summary.cre. verboseparameter insummary.cre.ite, additionalcreinput parameter to use personalized ite
estimations.- Default values for hyper parameters.
- Default values for method parameters.
- Simulation experiments for estimation (
estimation.R). - Simulation experiments for discovery (
discovery.R). extract_effect_modifiersfunction (utility for performance evaluation).evaluatefunction for discovery evaluation.confoundingparameter ingenerate_cre_datasetto set confounding type.ite_predandmodelin CRE results.binary_covariatesparameter ingenerate_cre_datasetto set covariates
domain.
Removed
include_ps_infmethod-parameter.include_ps_dismethod-parameter.oregmethod for ITE estimation.ipwmethod for ITE estimation.sipwmethod for ITE estimation.- ITE standard deviation estimation.
type_decayhyper-parameter.- Keep only
linregfor CATE estimation (removecate_methodand
cate_SL_libraryparameters). method_paramsandhyper_paramsadditional parameters insummary.cre.- ite standardization for Rules Generation.
random_stateparameter.include_offsetmethod parameter.
Bug fixes
- Rules Generation Issue (set rules length and fix bootstrapping).
v0.1.0
Changed
select_causal_rules()is nowlasso_rules_filter()- rules generation now accepts replace parameter to set replacement in bootstrapping
- rename parameter
twitht_anom - add parameter
t_corrdiscard correlation threshold - define
discard_anomalous_rules()anddiscard_corre_rules()functions and
and relative tests - reorganize
generate_rules_matrix()(separate standardization, and remove filtering) - explicit
prune_rules()function and add relative tests - remove
take1()function for random Rule Selection - add effect modifiers filter for Rule Generation
- add
generate_causal_rules()function and relative tests - solve Undesired 'All' Decision Rule Issue
- solve No Causal Rule Selected Issue
- improve
cre.summary()function min_nodes-->node_size(following the randomForest convention)estimate_cateinclude five methods for estimating the CATE values (poisson,DRLearner,bart-baggr,cf-means,linreg)creadded new arguments to (1) complementSuperLearnerpackage (ps_method_dis,ps_method_inf,or_method_dis,or_method_inf,cate_SL_library) and to (2) select CATE method and (3) whether to filter CATE p-values (cate_methodandfilter_cate).
Now returns an S3 object.estimate_ite_xyzconduct propensity score estimation using helper function withSuperLearnerpackagegenerate_cre_datasetmake number of covariates an argument of the function- improve examples and update tests for all functions
Added
printandsummarygeneric functions.check_inputfunction to isolate input checks.estimate_ite_aipwfunction for augmented inverse propensity weightingplot.cregeneric function to plot CRE S3 object Resultstest-cre_functional.Rtests the functionality of the packagestability_selectionfunction for causal rules selection
Removed
estimate_ite_blpfunction