Skip to content
/ samba Public

Spatiotemporal Bayesian model for the creation of an hourly gridded product of air temperature across the US

License

Notifications You must be signed in to change notification settings

NIEHS/samba

Repository files navigation

samba: Spatiotemporal Air-temperature Model with Bayesian Approach

Newyork - Philadelphia, July 2024 Urban heat island

The development of this library is in progress.

Spatiotemporal Air-temperature Model with Bayesian Approach

Creation of an hourly gridded product of air temperature across the US

Key points:

  • Covariates included in the analysis incorporate specificity of the urban environment for a better inference of the urban heat island. Most of them are downloaded thanks to the amadeus R package developed by the NIEHS.

  • Inference results reach 1km*1km resolution and hourly timesteps

  • Spatiotemporal model is inferred with INLA and incorporates data from WeatherUnderground personal weather stations

How to use?

Step 1: load libary

Step 2: download all necessary data

  • Personal weather stations data comes from WeatherUnderground, and is processed through brassens library
  • Spatial covariates include elevation, forest canopy height and imperviousness
  • Meteorological covariates all come from ERA5 reanalysis at single level

Step 3: run samba function

Prepare function arguments

args <- NULL
args[1] <- "2021-07-01 00:00:00"
args[2] <- "2021-07-31 23:00:00"
args[3] <- "./area.shp"
args[4] <- "./cws_raw.rds"
args[5] <- "../input/forest_height_2019_nam.tif"
args[6] <- "../input/gmted_medianstat_7-5arcsec.tif"
args[7] <- "../input/data_files/nlcd_2021_impervious_l48_20230630.img"
args[8] <- "../input/data_stream-oper_stepType-instant.nc"
args[9] <- "../input/data_stream-oper_stepType-accum.nc"
args[10] <- "example"
args[11] <- "./output/"

Create output dir

if (!dir.exists(args[11])) {
  dir.create(args[11], recursive = TRUE)
}

Run samba function

output <- samba(
  as.POSIXct(args[1], tz = "UTC", format = "%Y-%m-%d %H:%M:%S"),
  as.POSIXct(args[2], tz = "UTC", format = "%Y-%m-%d %H:%M:%S"),
  args[3],
  args[4],
  args[5],
  args[6],
  args[7],
  args[8],
  args[9]
)

Save prediction mean and sd rasters

terra::writeRaster(
  x = output$pred_mean,
  file = paste0(
    args[11],
    args[10],
    "_inference_predmean_",
    format(min(output$inf_out$pred$time), "%Y%m%d%H"),
    "_",
    format(max(output$inf_out$pred$time), "%Y%m%d%H"),
    ".tif"
  )
)
terra::writeRaster(
  x = output$pred_sd,
  file = paste0(
    args[11],
    args[10],
    "_inference_predsd_",
    format(min(output$inf_out$pred$time), "%Y%m%d%H"),
    "_",
    format(max(output$inf_out$pred$time), "%Y%m%d%H"),
    ".tif"
  )
)

About

Spatiotemporal Bayesian model for the creation of an hourly gridded product of air temperature across the US

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages