The development of this library is in progress.
Key points:
-
Covariates included in the analysis incorporate specificity of the urban environment for a better inference of the urban heat island. Most of them are downloaded thanks to the amadeus R package developed by the NIEHS.
-
Inference results reach 1km*1km resolution and hourly timesteps
-
Spatiotemporal model is inferred with INLA and incorporates data from WeatherUnderground personal weather stations
- Personal weather stations data comes from WeatherUnderground, and is processed through brassens library
- Spatial covariates include elevation, forest canopy height and imperviousness
- Meteorological covariates all come from ERA5 reanalysis at single level
Prepare function arguments
args <- NULL
args[1] <- "2021-07-01 00:00:00"
args[2] <- "2021-07-31 23:00:00"
args[3] <- "./area.shp"
args[4] <- "./cws_raw.rds"
args[5] <- "../input/forest_height_2019_nam.tif"
args[6] <- "../input/gmted_medianstat_7-5arcsec.tif"
args[7] <- "../input/data_files/nlcd_2021_impervious_l48_20230630.img"
args[8] <- "../input/data_stream-oper_stepType-instant.nc"
args[9] <- "../input/data_stream-oper_stepType-accum.nc"
args[10] <- "example"
args[11] <- "./output/"
Create output dir
if (!dir.exists(args[11])) {
dir.create(args[11], recursive = TRUE)
}
Run samba function
output <- samba(
as.POSIXct(args[1], tz = "UTC", format = "%Y-%m-%d %H:%M:%S"),
as.POSIXct(args[2], tz = "UTC", format = "%Y-%m-%d %H:%M:%S"),
args[3],
args[4],
args[5],
args[6],
args[7],
args[8],
args[9]
)
Save prediction mean and sd rasters
terra::writeRaster(
x = output$pred_mean,
file = paste0(
args[11],
args[10],
"_inference_predmean_",
format(min(output$inf_out$pred$time), "%Y%m%d%H"),
"_",
format(max(output$inf_out$pred$time), "%Y%m%d%H"),
".tif"
)
)
terra::writeRaster(
x = output$pred_sd,
file = paste0(
args[11],
args[10],
"_inference_predsd_",
format(min(output$inf_out$pred$time), "%Y%m%d%H"),
"_",
format(max(output$inf_out$pred$time), "%Y%m%d%H"),
".tif"
)
)