A Named Entity Recognition (NER) model fine-tuned using PyTorch and BERT on the CoNLL-2003 dataset. The project demonstrates how to train and evaluate a state-of-the-art NER model using modern deep learning techniques.
- Framework: PyTorch
- Model: google-bert/bert-base-cased
- Libraries:
- transformers
- seqeval
- torch
- Hardware: NVIDIA 1650 Max-Q (4GB GPU)
- Environment: Jupyter Notebook + CUDA
Using the CoNLL-2003 dataset which includes:
-
English Data: Reuters news stories (Aug 1996 - Aug 1997)
- Training set: End of August 1996
- Test set: December 1996
- Raw data: September 1996
-
German Data: Frankfurter Rundshau newspaper
- All sets: End of August 1992
- Raw data: September-December 1992
Using seqeval for evaluation:
- F1 Score
- Recall Score
- Precision Score
- Python 3.8+
- CUDA-capable GPU
- 4GB+ GPU Memory