Skip to content

Metaphysicist1/Fine-tuning-NER-for-En

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 

Repository files navigation

🏷️ Fine-tuning NER using PyTorch

PyTorch BERT License Last Update

🎯 Overview

A Named Entity Recognition (NER) model fine-tuned using PyTorch and BERT on the CoNLL-2003 dataset. The project demonstrates how to train and evaluate a state-of-the-art NER model using modern deep learning techniques.

πŸ› οΈ Tech Stack

  • Framework: PyTorch
  • Model: google-bert/bert-base-cased
  • Libraries:
    • transformers
    • seqeval
    • torch
  • Hardware: NVIDIA 1650 Max-Q (4GB GPU)
  • Environment: Jupyter Notebook + CUDA

πŸ“Š Dataset

Using the CoNLL-2003 dataset which includes:

  • English Data: Reuters news stories (Aug 1996 - Aug 1997)

    • Training set: End of August 1996
    • Test set: December 1996
    • Raw data: September 1996
  • German Data: Frankfurter Rundshau newspaper

    • All sets: End of August 1992
    • Raw data: September-December 1992

πŸ“ˆ Evaluation Metrics

Using seqeval for evaluation:

  • F1 Score
  • Recall Score
  • Precision Score

Prerequisites

  • Python 3.8+
  • CUDA-capable GPU
  • 4GB+ GPU Memory

About

Fine-tuning NER using PyTorch

Topics

Resources

Stars

Watchers

Forks