A Supervised Variational Auto-Encoder for Human Motion Generation using Convolutional Neural Networks
This paper is accepted at the 2024 International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI2024).
Authors: Ali Ismail-Fawaz, Maxime Devanne, Stefano Berretti, Jonathan Weber and Germain Forestier.
tensorflow==2.10
numpy
pandas
sklearn
matplotlib
scipy
imageio
You will need to install as well fmpeg
on your system.
In order to evaluate at the end the generative models, we will need to first train the GRU based classifier on the real data.
python3 main.py --output-directory results/ --train-on real --dataset HumanAct12 --runs 5 --split all --n-epochs 2000
python3 main.py --output-directory results/ --train-on real --dataset HumanAct12 --runs 5 --split train_test --n-epochs 2000
And the code will use the 4 cross subject split used for the HumanAct12.
Training on all the dataset:
python3 train_vae.py --generative-model VAE --dataset HumanAct12 --output-directory results/ --runs 5 --split all --weight-rec 1.0 --weight-kl 1.0 --n-epochs 2000
To train on the train test cross subject splits proposed in the paper, use the "train_test" value for the --split
argument.
Training on all the dataset:
python3 train_vae.py --generative-model SVAE --dataset HumanAct12 --output-directory results/ --runs 5 --split all --weight-rec 0.4995 --weight-kl 0.001 --weight-cls 0.4995 --n-epochs 2000
To train on the train test cross subject splits proposed in the paper, use the "train_test" value for the --split
argument.
python3 generate_samples.py --dataset HumanAct12 --generative-model SVAE --run 0 --plot-skeletons True --weight-rec 0.4995 --weight-kl 0.001 --weight-cls 0.4995 --save-skeletons True --class-generate 0 --n-samples 5 --best-predictions 3 --output-directory results/
python3 calculate_FID_Diversity.py --dataset HumanAct12 --output-directory results/ --generative-model SVAE --weight-rec 0.4995 --weight-kl 0.001 --weight-cls 0.4995 --on generated --n-generations 5 --n-factors 1
python3 calculate_FID_Diversity.py --dataset HumanAct12 --output-directory results/ --on real
If you use this work please cite the following:
@inproceedings{Ismail-Fawaz2024SVAE,
author = {Ismail-Fawaz, A. and Devanne, M. and Berretti, S. and Weber, J. and Forestier, G.},
title = {A Supervised Variational Auto-Encoder for Human Motion Generation using Convolutional Neural Networks},
booktitle = {International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI)},
year = {2024}
}
This work was supported by the ANR DELEGATION project (grant ANR-21-CE23-0014) of the French Agence Nationale de la Recherche. The authors would like to acknowledge the High Performance Computing Center of the University of Strasbourg for supporting this work by providing scientific support and access to computing resources. Part of the computing resources were funded by the Equipex Equip@Meso project (Programme Investissements d’Avenir) and the CPER Alsacalcul/Big Data. The authors would also like to thank the creators and providers of the HumanAct12 dataset.