-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathrun_training_2D.py
262 lines (230 loc) · 13.2 KB
/
run_training_2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright 2017 Division of Medical Image Computing, German Cancer Research Center (DKFZ)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import matplotlib
matplotlib.use('Agg')
import lasagne
import theano.tensor as T
import numpy as np
import theano
import os
import cPickle
from utils import plotProgress
import time
from utils import soft_dice, hard_dice
from BatchGenerator import BatchGenerator_2D
from dataset_utils import load_dataset
from utils import get_split
import imp
from batchgenerators.dataloading import MultiThreadedAugmenter
from batchgenerators.transforms import Compose, RndTransform
from batchgenerators.transforms import SpatialTransform, MirrorTransform
from batchgenerators.transforms import GammaTransform, ConvertSegToOnehotTransform
from batchgenerators.transforms import RandomCropTransform
def create_data_gen_train(patient_data_train, BATCH_SIZE, num_classes,
num_workers=5, num_cached_per_worker=2,
do_elastic_transform=False, alpha=(0., 1300.), sigma=(10., 13.),
do_rotation=False, a_x=(0., 2*np.pi), a_y=(0., 2*np.pi), a_z=(0., 2*np.pi),
do_scale=True, scale_range=(0.75, 1.25), seeds=None):
if seeds is None:
seeds = [None]*num_workers
elif seeds == 'range':
seeds = range(num_workers)
else:
assert len(seeds) == num_workers
data_gen_train = BatchGenerator_2D(patient_data_train, BATCH_SIZE, num_batches=None, seed=False,
PATCH_SIZE=(352, 352))
tr_transforms = []
tr_transforms.append(MirrorTransform((2, 3)))
tr_transforms.append(RndTransform(SpatialTransform((352, 352), list(np.array((352, 352))//2),
do_elastic_transform, alpha,
sigma,
do_rotation, a_x, a_y,
a_z,
do_scale, scale_range, 'constant', 0, 3, 'constant',
0, 0,
random_crop=False), prob=0.67,
alternative_transform=RandomCropTransform((352, 352))))
tr_transforms.append(ConvertSegToOnehotTransform(range(num_classes), seg_channel=0, output_key='seg_onehot'))
tr_composed = Compose(tr_transforms)
tr_mt_gen = MultiThreadedAugmenter(data_gen_train, tr_composed, num_workers, num_cached_per_worker, seeds)
tr_mt_gen.restart()
return tr_mt_gen
def run(config_file, fold=0):
cf = imp.load_source('cf', config_file)
print fold
dataset_root = cf.dataset_root
# ==================================================================================================================
BATCH_SIZE = cf.BATCH_SIZE
INPUT_PATCH_SIZE = cf.INPUT_PATCH_SIZE
num_classes = cf.num_classes
EXPERIMENT_NAME = cf.EXPERIMENT_NAME
results_dir = os.path.join(cf.results_dir, "fold%d/"%fold)
if not os.path.isdir(results_dir):
os.mkdir(results_dir)
n_epochs = cf.n_epochs
lr_decay = cf.lr_decay
base_lr = cf.base_lr
n_batches_per_epoch = cf.n_batches_per_epoch
n_test_batches = cf.n_test_batches
n_feedbacks_per_epoch = cf.n_feedbacks_per_epoch
num_workers = cf.num_workers
workers_seeds = cf.workers_seeds
# ==================================================================================================================
# this is seeded, will be identical each time
train_keys, test_keys = get_split(fold)
train_data = load_dataset(train_keys, root_dir=dataset_root)
val_data = load_dataset(test_keys, root_dir=dataset_root)
x_sym = cf.x_sym
seg_sym = cf.seg_sym
nt, net, seg_layer = cf.nt, cf.net, cf.seg_layer
output_layer_for_loss = net
#draw_to_file(lasagne.layers.get_all_layers(net), os.path.join(results_dir, 'network.png'))
data_gen_validation = BatchGenerator_2D(val_data, BATCH_SIZE, num_batches=None, seed=False,
PATCH_SIZE=INPUT_PATCH_SIZE)
data_gen_validation = MultiThreadedAugmenter(data_gen_validation,
ConvertSegToOnehotTransform(range(num_classes), 0, "seg_onehot"),
1, 2, [0])
# add some weight decay
l2_loss = lasagne.regularization.regularize_network_params(output_layer_for_loss,
lasagne.regularization.l2) * cf.weight_decay
# the distinction between prediction_train and test is important only if we enable dropout
prediction_train = lasagne.layers.get_output(output_layer_for_loss, x_sym, deterministic=False,
batch_norm_update_averages=False, batch_norm_use_averages=False)
loss_vec = - soft_dice(prediction_train, seg_sym)
loss = loss_vec.mean()
loss += l2_loss
acc_train = T.mean(T.eq(T.argmax(prediction_train, axis=1), seg_sym.argmax(-1)), dtype=theano.config.floatX)
prediction_test = lasagne.layers.get_output(output_layer_for_loss, x_sym, deterministic=True,
batch_norm_update_averages=False, batch_norm_use_averages=False)
loss_val = - soft_dice(prediction_test, seg_sym)
loss_val = loss_val.mean()
loss_val += l2_loss
acc = T.mean(T.eq(T.argmax(prediction_test, axis=1), seg_sym.argmax(-1)), dtype=theano.config.floatX)
# learning rate has to be a shared variable because we decrease it with every epoch
params = lasagne.layers.get_all_params(output_layer_for_loss, trainable=True)
learning_rate = theano.shared(base_lr)
updates = lasagne.updates.adam(T.grad(loss, params), params, learning_rate=learning_rate, beta1=0.9, beta2=0.999)
dc = hard_dice(prediction_test, seg_sym.argmax(1), num_classes)
train_fn = theano.function([x_sym, seg_sym], [loss, acc_train, loss_vec], updates=updates)
val_fn = theano.function([x_sym, seg_sym], [loss_val, acc, dc])
dice_scores=None
data_gen_train = create_data_gen_train(train_data, BATCH_SIZE,
num_classes, num_workers=num_workers,
do_elastic_transform=True, alpha=(100., 350.), sigma=(14., 17.),
do_rotation=True, a_x=(0, 2.*np.pi), a_y=(-0.000001, 0.00001),
a_z=(-0.000001, 0.00001), do_scale=True, scale_range=(0.7, 1.3),
seeds=workers_seeds) # new se has no brain mask
all_training_losses = []
all_validation_losses = []
all_validation_accuracies = []
all_training_accuracies = []
all_val_dice_scores = []
epoch = 0
while epoch < n_epochs:
if epoch == 100:
data_gen_train = create_data_gen_train(train_data, BATCH_SIZE,
num_classes, num_workers=num_workers,
do_elastic_transform=True, alpha=(0., 250.), sigma=(14., 17.),
do_rotation=True, a_x=(-2 * np.pi, 2 * np.pi),
a_y=(-0.000001, 0.00001), a_z=(-0.000001, 0.00001),
do_scale=True, scale_range=(0.75, 1.25),
seeds=workers_seeds) # new se has no brain mask
if epoch == 125:
data_gen_train = create_data_gen_train(train_data, BATCH_SIZE,
num_classes, num_workers=num_workers,
do_elastic_transform=True, alpha=(0., 150.), sigma=(14., 17.),
do_rotation=True, a_x=(-2 * np.pi, 2 * np.pi),
a_y=(-0.000001, 0.00001), a_z=(-0.000001, 0.00001),
do_scale=True, scale_range=(0.8, 1.2),
seeds=workers_seeds) # new se has no brain mask
epoch_start_time = time.time()
learning_rate.set_value(np.float32(base_lr* lr_decay**epoch))
print "epoch: ", epoch, " learning rate: ", learning_rate.get_value()
train_loss = 0
train_acc_tmp = 0
train_loss_tmp = 0
batch_ctr = 0
for data_dict in data_gen_train:
data = data_dict["data"].astype(np.float32)
seg = data_dict["seg_onehot"].astype(np.float32).transpose(0, 2, 3, 1).reshape((-1, num_classes))
if batch_ctr != 0 and batch_ctr % int(np.floor(n_batches_per_epoch/n_feedbacks_per_epoch)) == 0:
print "number of batches: ", batch_ctr, "/", n_batches_per_epoch
print "training_loss since last update: ", \
train_loss_tmp/np.floor(n_batches_per_epoch/(n_feedbacks_per_epoch-1)), " train accuracy: ", \
train_acc_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch)
all_training_losses.append(train_loss_tmp/np.floor(n_batches_per_epoch/(n_feedbacks_per_epoch-1)))
all_training_accuracies.append(train_acc_tmp/np.floor(n_batches_per_epoch/(n_feedbacks_per_epoch-1)))
train_loss_tmp = 0
train_acc_tmp = 0
if len(all_val_dice_scores) > 0:
dice_scores = np.concatenate(all_val_dice_scores, axis=0).reshape((-1, num_classes))
plotProgress(all_training_losses, all_training_accuracies, all_validation_losses,
all_validation_accuracies, os.path.join(results_dir, "%s.png" % EXPERIMENT_NAME),
n_feedbacks_per_epoch, val_dice_scores=dice_scores, dice_labels=["brain", "1", "2", "3", "4", "5"])
loss_vec, acc, l = train_fn(data, seg)
loss = loss_vec.mean()
train_loss += loss
train_loss_tmp += loss
train_acc_tmp += acc
batch_ctr += 1
if batch_ctr > (n_batches_per_epoch-1):
break
train_loss /= n_batches_per_epoch
print "training loss average on epoch: ", train_loss
val_loss = 0
accuracies = []
valid_batch_ctr = 0
all_dice = []
for data_dict in data_gen_validation:
data = data_dict["data"].astype(np.float32)
seg = data_dict["seg_onehot"].astype(np.float32).transpose(0, 2, 3, 1).reshape((-1, num_classes))
w = np.zeros(num_classes, dtype=np.float32)
w[np.unique(seg.argmax(-1))] = 1
loss, acc, dice = val_fn(data, seg)
dice[w == 0] = 2
all_dice.append(dice)
val_loss += loss
accuracies.append(acc)
valid_batch_ctr += 1
if valid_batch_ctr > (n_test_batches-1):
break
all_dice = np.vstack(all_dice)
dice_means = np.zeros(num_classes)
for i in range(num_classes):
dice_means[i] = all_dice[all_dice[:, i]!=2, i].mean()
val_loss /= n_test_batches
print "val loss: ", val_loss
print "val acc: ", np.mean(accuracies), "\n"
print "val dice: ", dice_means
print "This epoch took %f sec" % (time.time()-epoch_start_time)
all_val_dice_scores.append(dice_means)
all_validation_losses.append(val_loss)
all_validation_accuracies.append(np.mean(accuracies))
dice_scores = np.concatenate(all_val_dice_scores, axis=0).reshape((-1, num_classes))
plotProgress(all_training_losses, all_training_accuracies, all_validation_losses, all_validation_accuracies,
os.path.join(results_dir, "%s.png" % EXPERIMENT_NAME), n_feedbacks_per_epoch, val_dice_scores=dice_scores,
dice_labels=["brain", "1", "2", "3", "4", "5"])
with open(os.path.join(results_dir, "%s_Params.pkl" % (EXPERIMENT_NAME)), 'w') as f:
cPickle.dump(lasagne.layers.get_all_param_values(output_layer_for_loss), f)
with open(os.path.join(results_dir, "%s_allLossesNAccur.pkl"% (EXPERIMENT_NAME)), 'w') as f:
cPickle.dump([all_training_losses, all_training_accuracies, all_validation_losses,
all_validation_accuracies, all_val_dice_scores], f)
epoch += 1
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-f", help="fold", type=int)
parser.add_argument("-c", help="config file", type=str)
args = parser.parse_args()
run(args.c, args.f)