Skip to content
/ flip Public

Synthetic Image generation with Flip. Generate thousands of new 2D images from a small batch of objects and backgrounds.

License

Notifications You must be signed in to change notification settings

LinkedAi/flip

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Flip

Python supported

Synthetic Data generation with Flip! Generate thousands of new 2D images from a small batch of objects and backgrounds.

Installation

Install Flip using pip:

pip install flip-data

Dependencies

Flip requires:

  • Python (>= 3.7)
  • Opencv (>= 4.3.0)
  • Numpy (>= 1.19.1)

Quick Start (Example)

To try Flip library you can run examples/data_generator.py. You will need to add background images and objects to compose your new training dataset, then place them in the following directories:

BACKGROUNDS_PATTERN = "examples/data/backgrounds/*"
OBJECTS_PATTERN = "examples/data/objects/**/*"

The main workflow in Flip is to create transformers and then execute them as follows:

## Import Flip transformers
import flip.transformers as tr

OUT_DIR = "examples/result"

...

## Create Child transformers
transform_objects = [
        tr.data_augmentation.Rotate(mode='random'),
        tr.data_augmentation.Flip(mode='y'),
        tr.data_augmentation.RandomResize(
            mode='symmetric_w',
            relation='parent',
            w_percentage_min=0.2,
            w_percentage_max=0.5
        )
    ]

## Create main transformer
transform = tr.Compose([
    tr.ApplyToObjects(transform_objects),
    tr.domain_randomization.ObjectsRandomPosition(
        x_min=0, y_min=0.4, x_max=0.7, y_max=0.7, mode='percentage'
    ),
    tr.data_augmentation.Flip('x'),
    tr.domain_randomization.Draw(),
    tr.labeler.CreateBoundingBoxes(),
    tr.io.CreateJson(out_dir=OUT_DIR, name='img_generate.jpg'),
    tr.io.CreateJson(out_dir=OUT_DIR, name='json_generated.jpg')
])

## Execute transformations
el = tr.Element(image=..., objects=...)
[el] = transform(el)

Object

Transformers

The main transformers are:

  • Transformer
  • Compose
  • ApplyToObjects
  • ApplyToBackground
  • ApplyToCreatedImage

By the way, all Transformers will be executed over objects of class Element and will return a new transformed Element.

Data Augmentation

  • Flip: Flip the Element in x or y axis.
  • RandomResize: Change the size of an Element randomly.
  • Rotate: Rotate Element randomly.
  • Color: Change color space or the element color.
  • Brightness: Changes the brightness in the image.
  • Contrast: Changes the contrast in the image.
  • Saturation: Changes the saturation in the image.
  • Noise: Add noise to the element image.
  • CutOut: Remove a section of the element in the desired area.
  • RandomCrop: Cut the image randomly.

Random Domain

  • Draw: Draw objects over background Element to merge them into a new image.
  • ObjectsRandomPosition: Set Random positions to objects over background Element.

Labeler

  • CreateBoundingBoxes: Draw bounding boxes around the objects contained by a background Element.
  • CreateMasks: Creates the segmentation mask for the objects contained in a background element.

IO

  • SaveImage: Save a .jpg File with the new generated image.
  • SaveMask: Save a .jpg File with the new generated mask.
  • Json: Save generated Labels as a Json.
  • Csv: Save generated Labels as a CSV.

Want to Contribute or have any doubts or feedback?

If you want extra info, email me at [email protected]

Report Issues

Please help us by reporting any issues you may have while using Flip.

License

About

Synthetic Image generation with Flip. Generate thousands of new 2D images from a small batch of objects and backgrounds.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages