Skip to content

LimHyungTae/paper-writing-checklist

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

47 Commits
ย 
ย 
ย 
ย 

Repository files navigation

Latex Writing Checklists

์ด ๊ธ€์€ ํ–ฅํ›„ ๋‚ด๊ฐ€ ์ž„์šฉ๋œ ํ›„ ๋Œ€ํ•™์›์ƒ๋“ค์˜ ๋…ผ๋ฌธ์„ ๊ฒ€ํ† ํ•  ๋•Œ, ๊ฐ™์€ ๋ง์„ ๊ฐ ํ•™์ƒ์—๊ฒŒ ๋ฐ˜๋ณตํ•ด์„œ ์„ค๋ช…ํ•˜๋Š” ํ–‰์œ„๋ฅผ ๊ทธ๋‚˜๋งˆ ๋œ ํ•˜๊ธฐ ์œ„ํ•ด ์ž‘์„ฑํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์‹œ๊ฐ„์ด ๋‚  ๋•Œ๋งˆ๋‹ค ์ง€๊ธˆ๊นŒ์ง€ ๋ฐฐ์›Œ์˜จ writing ๊ด€๋ จ ๋‚ด์šฉ์„ ์ •๋ฆฌํ•˜์—ฌ ํ•˜๋‚˜์”ฉ ์ถ”๊ฐ€ํ•ด ๊ฐˆ ์˜ˆ์ •์ด๋‹ค.

์ด๋Š” ์ฒ ์ €ํžˆ ๋‚˜์˜ ์ทจํ–ฅ์ด ๋ฐ˜์˜๋œ writing ์ฒดํฌ๋ฆฌ์ŠคํŠธ์ด๋‹ค. ์‚ฌ์‹ค, ์ผ๋ถ€ ํ•ญ๋ชฉ์€ right/wrong(๋ฐ˜๋“œ์‹œ ๋”ฐ๋ผ์•ผ ํ•  ๊ฒƒ)์ด๊ณ , ์ผ๋ถ€๋Š” better/worse(๋”ฐ๋ฅด๋ฉด ์ข‹์€ ๊ฒƒ)์˜ ์˜์—ญ์ด์ง€๋งŒ, ์•„๋Š” ๋งŒํผ ๋ณด์ธ๋‹ค๊ณ  ํ•˜์ง€ ์•Š๋Š”๊ฐ€. ๋…ผ๋ฌธ์„ ์“ฐ๊ธฐ ์ „์— ํ•œ ๋ฒˆ ์ฝ๊ณ , ๊ต์ˆ˜๋‹˜๊ป˜ ๋…ผ๋ฌธ ๋“œ๋ฆฌ๊ธฐ ์ „์— ํ•œ ๋ฒˆ ์ฝ๊ณ  ์Šค์Šค๋กœ ๋‹ค์‹œ ์ฐฌ์ฐฌํžˆ ์‚ดํŽด๋ณธ ํ›„ ๊ต์ˆ˜๋‹˜๊ป˜ v1 ๋…ผ๋ฌธ์„ ๋“œ๋ฆฌ๋ฉด ๐ŸŽ“โœจ๋‹น์‹ ๋„ ํ•  ์ˆ˜ ์žˆ๋‹ค! @๋ฐ•์‚ฌ 3๋…„ ์กธ์—…โ˜… โœจ๐ŸŽ“ (์•„๋‹˜ ๋ง๊ณ )


๋…ผ๋ฌธ์„ ์“ธ ๋•Œ์˜ ๋งˆ์Œ๊ฐ€์ง

  1. ๋…ผ๋ฌธ์€ ์ ˆ๋Œ€๋กœ, ํ•™๋ถ€๊ณผ์ • ๋•Œ๊นŒ์ง€์˜ ์‹œํ—˜์„ 100์  ๋งž๋Š” ๊ฒƒ์ฒ˜๋Ÿผ '๋งŒ์ '์˜ ์ƒํƒœ๊ฐ€ ๋  ์ˆ˜ ์—†๋‹ค.
    • Accept์„ ๋…ธ๋ฆฐ๋‹ค๋Š” ๋งˆ์ธ๋“œ๊ฐ€ ์•„๋‹ˆ๋ผ, reject์˜ complement๋ฅผ ๋…ธ๋ฆฐ๋‹ค๋Š” ๋งˆ์ธ๋“œ๋ฅผ ์žฅ์ฐฉํ•ด์•ผ ํ•œ๋‹ค.
  2. ๋…ผ๋ฌธ์€ ์—„๊ฒฉํ•œ template์ด ์กด์žฌํ•˜๋Š” ๊ธ€์ด๋‹ค.
    • ๋…ผ๋ฌธ์„ ์ฒ˜์Œ ์“ฐ๋Š” ์ด๋ผ๋ฉด ์ œ๋ฐœ ์ฐฝ์˜์ ์œผ๋กœ ๊ธ€์ด๋‚˜ figure๋ฅผ ํ‘œํ˜„ํ•˜์ง€ ๋ง๋ผ. ๋…ผ๋ฌธ์„ ์ฒ˜์Œ ์“ฐ๋Š” ์ด๋ผ๋ฉด, 95%์˜ ํ™•๋ฅ ๋„ ๋‹น์‹ ๋งŒ ์•Œ์•„๋ณผ ์ˆ˜ ์žˆ๋Š” ๊ธฐ๊ดดํ•œ representation์„ ์‚ฌ์šฉํ•  ํ™•๋ฅ ์ด ๋†’๊ธฐ ๋•Œ๋ฌธ.
    • Solution: ๋‚ด๊ฐ€ ์ฝ์–ด๋ณธ ๋…ผ๋ฌธ ์ค‘ ์ธ์šฉ์ˆ˜๊ฐ€ 100์— ๊ฐ€๊นŒ์šด ๋…ผ๋ฌธ์—์„œ ์“ฐ์ธ ํ‘œํ˜„ ๋ฐฉ์‹์ด๋‚˜ ๋ฌธ์žฅ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ธ€์„ ์“ฐ๊ฑฐ๋‚˜ figure๋ฅผ ๋”ฐ๋ผ ๊ทธ๋ฆฌ๋Š” ๊ฒƒ์„ ์ถ”์ฒœ
      • ๋‚˜์˜ ๊ฒฝ์šฐ, ์ฒซ ๋…ผ๋ฌธ์„ ์“ธ ๋•Œ ResNet paper์˜ ๋ชจ๋“  ๋ฌธ๋‹จ์„ ๊ฑฐ์˜ ์™ธ์šฐ๋‹ค์‹œํ”ผ ํ•„์‚ฌํ•˜๋ฉฐ writing์„ ๊ณต๋ถ€ํ•จ
      • ๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ ์—ฐ๊ตฌ์ž๋ผ๋ฉด, Cyrill ๊ต์ˆ˜๋‹˜๋„ค ์—ฐ๊ตฌ์‹ค์˜ ๋…ผ๋ฌธ์„ ์ฝ์œผ๋ฉฐ ์˜์–ด ๊ณต๋ถ€ํ•˜๋Š” ๊ฒƒ์„ ์ถ”์ฒœ
        • Cyrill ๊ต์ˆ˜๋‹˜์˜ ๋…ผ๋ฌธ ๊ด€๋ จ ๊ธฐ์ € ์ฒ ํ•™์ด ๋…ผ๋ฌธ์€ ์ด์•ผ๊ธฐ์ฑ…์ฒ˜๋Ÿผ ์ˆ ์ˆ  ์ฝํ˜€์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋…ผ๋ฌธ์˜ ๊ตฌ์กฐ๊ฐ€ ์ž˜ ์งœ์—ฌ ์žˆ์Œ๊ณผ ๋™์‹œ์— ๋…์ž๊ฐ€ ์‰ฝ๊ฒŒ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ๊นŠ์ด ๊ณ ๋ฏผํ•œ ํ”์ ์ด ์ž˜ ๋“œ๋Ÿฌ๋‚˜ ์žˆ์Œ
  3. ์ธ๊ฐ„์€ ๋ˆ„๊ตฌ๋‚˜ manuscript๋ฅผ ์“ธ ๋•Œ ์‹ค์ˆ˜๋ฅผ ํ•˜๊ฒŒ ๋˜์–ด ์žˆ๋‹ค. '๋‚˜๋Š” ์•„๋‹๊ฑฐ์•ผ'๋ผ๋Š” ์–ด๋ฆฌ์„์€ ์ƒ๊ฐ์„ ๋ฒ„๋ฆฌ์ž.
    • ์‚ฌ์‹ค ์ด๋ฅผ ์ตœ๋Œ€ํ•œ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด Latex์„ ์“ฐ๋Š” ๊ฒƒ์ด๋‹ค! ํ–ฅํ›„ ๋™์˜์ƒ์—์„œ ๋‹ค๋ฃฐ ์˜ˆ์ •
    • ๊ณต๋™ ์ €์ž๋ผ๋ฉด, ์ฑ…์ž„๊ฐ์„ ๊ฐ€์ง€๊ณ  ํ•œ๋ฒˆ์€ proofreading์„ ๋„์™€์ฃผ์ž
      • e.g., Grammarly ๋Œ๋ฆฌ๊ธฐ or ChatGPTํ•œํ…Œ ํ•œ section์”ฉ proofreadingํ•ด๋‹ฌ๋ผ๊ณ  ํ•˜๊ธฐ
      • ChatGPT์—๊ฒŒ๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๋ฌผ์–ด์ฃผ๋ฉด ๋งˆ ๋˜˜๋˜˜ํ•˜์ด ์ž˜ ํ•ด์คŒ!
        • ๋„ˆ๋ฌด ๋งŽ์€ ์–‘์˜ ๋‚ด์šฉ์„ ํ•œ๊บผ๋ฒˆ์— ๋ฌผ์–ด๋ณด๋ฉด ๋Œ€์ถฉ ์•Œ๋ ค ์คŒ...ํ•œ section์”ฉ raw latex ์ฝ”๋“œ๋กœ ๋ฌผ์–ด๋ณด๋Š” ๊ฑธ ์ถ”์ฒœ.
์•„๋ž˜๋Š” ๋‚ธ ๋…ผ๋ฌธ์˜ ${SECTION} ๋ถ€๋ถ„์ด์•ผ

.
.
(๋ณธ๋ฌธ ๋‚ด์šฉ)
.
.

์œ„์˜ ๋ฌธ์žฅ๋“ค์—์„œ ์˜คํƒˆ์ž๋‚˜ ์ˆ˜์ผ์น˜, ๋ฌธ๋ฒ• ๋“ฑ ํ‹€๋ฆฐ ๋ถ€๋ถ„์„ proofreadํ•ด์ฃผ๊ณ , ํ‹€๋ฆฐ ๋ถ€๋ถ„์ด ์žˆ์œผ๋ฉด ๊ฐœ์กฐ์‹์œผ๋กœ line-by-line์œผ๋กœ ๊ฐ„๋žตํžˆ ์•Œ๋ ค ์ค˜
๋ฌธ์žฅ ์•ž์— % ๋˜์–ด ์žˆ๋Š” ๋ถ€๋ถ„์€ ์ฃผ์„ ์ฒ˜๋ฆฌ๋œ ์ค„์ด์–ด์„œ proofreadingํ•  ๋•Œ ๋ฌด์‹œํ•ด ์ค˜.
  1. ๋…ผ๋ฌธ์€ ์ด ์„ธ์ƒ์— ์—†๋˜ ์ง€์‹์„ ํƒ€์ธ์ด ์ฝ๊ณ ๋„ ์˜คํ•ด ์—†์ด ๋ช…ํ™•ํ•˜๊ฒŒ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด ๋ฌด์—‡๋ณด๋‹ค ์ค‘์š”ํ•˜๋‹ค.
  2. ํ† ํ”Œ ์ ์ˆ˜๊ฐ€ 110์  ์ด์ƒ์ด ์•„๋‹ˆ๋ผ๋ฉด, ์ง€๋„๊ต์ˆ˜๋‹˜์˜ writing style์„ ์ตœ๋Œ€ํ•œ ์กด์ค‘ํ•˜์ž.
    • ๊ฐ ๊ต์ˆ˜๋‹˜๋“ค์€ ์‚ฐ์ „์ˆ˜์ „์„ ๊ฒช์œผ๋ฉฐ ์˜ค๋žœ ๊ฒฝํ—˜ ๋์— ์ž์‹ ๋งŒ์˜ ๊ธ€์“ฐ๊ธฐ ์Šคํƒ€์ผ์„ ํ™•๋ฆฝํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—, ๊ฐ€๋Šฅํ•œ ํ•œ ๊ทธ ํ‹€์„ ๋”ฐ๋ฅด๋Š” ๊ฒƒ์ด ์ข‹์Œ
      • ๋…ผ๋ฌธ์„ ์ž‘์„ฑ ์ „, ์„ ๋ฐฐ๋“ค์ด ์ด์ „์— ์ž‘์„ฑํ•œ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ ๋ฐฉ์‹, ๋ฌธ์ฒด, ํ‘œํ˜„ ๋ฐฉ์‹, ์ „๊ฐœ ๋ฐฉ์‹ ๋“ฑ์„ ๋ฉด๋ฐ€ํžˆ ๋ถ„์„ํ•˜์ž
    • ๋‹ค๋งŒ, ๊ต์ˆ˜๋‹˜์˜ ์ œ์•ˆ์ด ๋ช…๋ฐฑํžˆ ํ‹€๋ ธ๋‹ค๊ณ  ํŒ๋‹จ๋  ๊ฒฝ์šฐ(e.g., ์˜๋ฏธ๊ฐ€ ๋„ˆ๋ฌด ๋‹ฌ๋ผ์ง„๋‹ค๊ฑฐ๋‚˜, ๋ฆฌ๋ทฐ์–ด๊ฐ€ ๊ณต๊ฒฉํ•  ์—ฌ์ง€๊ฐ€ ์žˆ๋‹ค๊ฑฐ๋‚˜)์—๋Š” ๊ณต์†ํ•˜๊ฒŒ ์˜๊ฒฌ์„ ์ œ์‹œํ•ด๋ณด์ž.
      • ์ผ๋ฐ˜์ ์œผ๋กœ, ๊ทธ ์ด์œ ๊ฐ€ ํ•ฉ๋ฆฌ์ ์ด๋ฉด ๋Œ€๋ถ€๋ถ„ ๋ฐ›์•„๋“ค์—ฌ ์ฃผ์‹ฌ
        • ํ•˜์ง€๋งŒ, ๋†’์€ ํ™•๋ฅ ๋กœ ์ด๋Š” ํ•™์ƒ์˜ ๊ฒฝํ—˜ ๋ถ€์กฑ์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์ด๋ฉฐ, ์‹ค์ œ๋กœ๋Š” ๊ต์ˆ˜๋‹˜์˜ ์กฐ์–ธ์ด ๋” ์ ์ ˆํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ(์•˜)๋‹ค(100% ๋‚˜์˜ ๋Œ€ํ•™์› ์‹œ์ ˆ ๊ฒฝํ—˜์— ๊ธฐ๋ฐ˜ํ•œ ์ฃผ๊ด€์ ์ธ ์˜๊ฒฌ)

๋‹น์žฅ ๋„์›€๋˜๋Š” English Writing Tips

  • ๋…ผ๋ฌธ ์“ฐ๋Š” ๊ฒƒ ์ž์ฒด๊ฐ€ ์ฒ˜์Œ์ด๋ผ๋ฉด? ์‚ฌ์‹ค ์˜์–ด writing์ด ์ค‘์š”ํ•œ ๊ฒŒ ์•„๋‹ˆ๋ผ, '๋…ผ๋ฌธ'์ด๋ผ๋Š” ๊ฒƒ์˜ ์ดํ•ด๋„๋ฅผ ๋จผ์ € ๋†’์ด๋Š” ๊ฒŒ ์ค‘์š”ํ•จ
  • ํ•œ ๋ฌธ๋‹จ์—์„œ๋Š” ํ•˜๋‚˜์˜ key message๋งŒ ์กด์žฌํ•ด์•ผ ํ•จ
    • ๊ธ€์„ ๋‹ค ์“ด ํ›„, ๊ฐ ๋ฌธ๋‹จ ๋ณ„ ๊ธธ์ด๋ฅผ ์‚ดํŽด๋ณด์ž. ๋ฌธ๋‹จ์˜ ๊ธธ์ด๊ฐ€ ๋„ˆ๋ฌด ๊ธธ๊ฑฐ๋‚˜ (> 10) ์งง์œผ๋ฉด (< 3) ํ•ด๋‹น ๋ฌธ๋‹จ์˜ key sentence๊ฐ€ ๋ช…ํ™•ํžˆ ์žกํžˆ์ง€ ์•Š์€ ๊ฒƒ์ด๋‹ค. ๊ธ€์˜ flow๋ฅผ ์Šค์Šค๋กœ ์ ๊ฒ€ํ•ด๋ณด์ž.
  • ์˜์–ด๋Š” ๋ช…์‚ฌํ˜•์œผ๋กœ ์“ฐ๋Š” ๊ฒŒ ์ž์—ฐ์Šค๋Ÿฌ์›€
    • He cooks well (x)์ด๋ผ๊ณ  ํ•˜์ง€ ์•Š๊ณ , He's a good cook (o)๋ผ๊ณ  ํ•˜๋Š” ๊ฒŒ ์™ธ๊ตญ์ธ ์ž…์žฅ์—์„œ ์ž์—ฐ์Šค๋Ÿฌ์›€.
    • ์ ์šฉ ์˜ˆ์‹œ: Our approach is robust, accurate and fast๋ผ๊ณ  ์“ฐ๋Š” ๊ฑฐ ๋ณด๋‹ค we propose a robust, accurate, and fast approach๋ผ๊ณ  ์“ฐ๋Š” ๊ฒŒ ๋” ์ž์—ฐ์Šค๋Ÿฌ์›€
  • ์ž๊ธฐ๊ฐ€ ์ž˜ ๋ชจ๋ฅด๋Š” ์˜์–ด ๋‹จ์–ด๋ฅผ ์“ฐ๊ณ ์ž ํ•œ๋‹ค๋ฉด ๋ฐ˜๋“œ์‹œ ์˜์˜ ์‚ฌ์ „์—์„œ์˜ ์˜๋ฏธ๋ฅผ ์ฝ์–ด๋ณด๊ณ , ์‹ค์ œ๋กœ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉ๋˜๋Š”์ง€ ๊ตฌ๊ธ€์ด๋‚˜ ์‚ฌ์ „์—์„œ ์˜ˆ์‹œ ๋ฌธ์žฅ์„ ํ†ตํ•ด ํ™•์ธํ•  ๊ฒƒ
    • ludwig๋กœ ํ•ด๋‹น ๋‹จ์–ด๋‚˜ ๋ฌธ์žฅ ๊ตฌ๊ฐ€ ์‹ค์ œ๋กœ ์“ฐ์ด๋Š”์ง€ ํ™•์ธํ•ด๋ด์•ผ ํ•จ! (๊ทผ๋ฐ ํ•˜๋ฃจ ํšŸ์ˆ˜ ์ œํ•œ์ด ์žˆ์Œ)
    • ํ•œ๊ธ€๋กœ ๋น„์œ ํ•˜์ž๋ฉด, ๊ฒ€์—ด, ๊ฒ€์ˆ˜, ๊ฒ€ํ† , ๊ฒ€์‚ฌ๊ฐ€ ๋‹ค ํƒ€์ธ์ด ๋ฌด์–ธ๊ฐ€๋ฅผ ์‚ดํŽด๋ณด๊ณ  ํ™•์ธํ•œ๋‹ค๋Š” ์˜๋ฏธ๋ฅผ ์ง€๋‹Œ ๋‹จ์–ด์ด์ง€๋งŒ, ๊ฐ๊ธฐ ๋‹ค๋ฅด๊ฒŒ ์“ฐ์ด๋Š” ๊ฑธ ํ•œ๊ตญ์ธ์ด๋ผ๋ฉด ์•Œ ๊ฒƒ์ด๋‹ค.
      • ๊ทธ ๋ˆ„๊ตฌ๋„ ๊ต์ˆ˜๋‹˜๊ป˜ '๊ต์ˆ˜๋‹˜ ๊ฒ€์—ด ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค'ํ•˜๊ณ  ๋…ผ๋ฌธ์„ ๋ณด๋‚ด์ง€ ์•Š์ง€ ์•Š๋Š”๊ฐ€? ํ•˜์ง€๋งŒ ํ•œ๊ธ€์„ ์–ด์ค‘๊ฐ„ํ•˜๊ฒŒ ํ• ์ค„ ์•„๋Š” ์™ธ๊ตญ์ธ ์ž…์žฅ์—์„œ๋Š” '์˜ค์šฐ, ๊ฒ€์—ด? Such a novel word for me'ํ•˜๊ณ  ์“ธ ์ˆ˜๋„ ์žˆ๋‹ค.
      • ์ด์ฒ˜๋Ÿผ ์–ธ์–ด ๋งˆ๋‹ค ๊ฐ ๋‹จ์–ด๊ฐ€ ์ง€๋‹ˆ๋Š” ๋Šฌ์•™์Šค๊ฐ€ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์ด๋ฅผ ์ž˜ ์‚ดํŽด๋ด์•ผ ํ•จ(ํŠนํžˆ ์šฐ๋ฆฌ๊ฐ™์€ non-English spoken world์˜ ์—ฐ๊ตฌ์ž๋ผ๋ฉด ๋”๋”์šฑ...).
  • ์˜์–ด์—์„œ ์•ฝ์–ด๋Š” simultaneous localization and mapping (SLAM)๊ณผ ๊ฐ™์ด ์“ฐ๋ฉด ์†Œ๋ฌธ์ž๋กœ ์“ฐ๋ฉด ๋จ
    • simultaneous localization and mapping (SLAM)
  • ChatGPT๊ฐ€ 'ensure', 'faciliate'์™€ ๊ฐ™์€ ๋‹จ์–ด๋ฅผ ์ถ”์ฒœํ•ด์ฃผ๋Š”๋ฐ, ์ด์™€ ๊ฐ™์€ ๋‹จ์–ด๋ณด๋‹ค ์ข€ ๋” ๊ตฌ์ฒด์ ์ธ ๋‹จ์–ด๋ฅผ ์“ฐ๊ธธ
    • ๋„๋Œ€์ฒด ensure consistency, ensure robustness๊ฐ€ ๋ฌด์Šจ ๋œป์ž„?
    • (์˜) ensure: to make (something) sure, certain, or safe
      • ์ฆ‰, ์–ด๋–ค ์ž…๋ ฅ์˜ ํฌ๊ธฐ๋ฅผ N๊ฐœ๋กœ fixํ•˜๋Š” ๋“ฑ, 100์ด๋ฉด 100 ๋‹ค ํ•ฉ๋‹นํ•œ ์ƒํ™ฉ์—์„œ๋งŒ ensure์„ ์“ฐ๊ณ , ๊ทธ ์ด์™ธ์—๋Š” maintain consistency๋‚˜ enhance robustness์™€ ๊ฐ™์ด ๋…์ž๊ฐ€ ์ง๊ด€์ ์œผ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋‹จ์–ด๋ฅผ ์‚ฌ์šฉํ•  ๊ฒƒ
  • ๋…ผ๋ฌธ์—์„œ 'outperform'์ด๋ผ๋Š” ๋‹จ์–ด๋ฅผ ์ ˆ๋Œ€๋กœ ์‚ฌ์šฉํ•˜์ง€ ๋ง์ž
    • ๊ฝค๋‚˜ ๋ฌด๋ก€ํ•œ ํ‘œํ˜„์ผ์ง€๋„,,,? 80%์˜ ํ™•๋ฅ ๋กœ baseline approaches์˜ ์ €์ž๊ฐ€ ๋‹น์‹ ์˜ ๋…ผ๋ฌธ์˜ reviewer์ผ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Œ
      • ๊ทผ๋ฐ baseline approaches๋ฅผ ๊ธ€์—์„œ ๊ณผ๋„ํ•˜๊ฒŒ ๋‚œ๋„์งˆํ•ด๋ฒ„๋ฆฐ๋‹ค๋ฉด?
    • 'showed lower error'๋‚˜ 'showed higher success rate', 'showed a substantial increase in performance'์™€ ๊ฐ™์ด ์™„๊ณกํ•œ ํ‘œํ˜„์„ ์“ธ ๊ฒƒ.
  • 'significant'๋‚˜ 'significantly'๋Š” t-test ์ดํ›„ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•˜๋‹ค๊ณ  ๊ฒ€์ฆ์ด ๋˜์—ˆ์„ ๋•Œ๋งŒ ์“ธ ์ˆ˜ ์žˆ์Œ
    • 'substantially'์„ ํ™œ์šฉํ•˜์ž
  • ํ•œ๊ตญ์—์„œ๋Š” ํŠนํžˆ passive voice๋กœ ๊ธ€์„ ์จ๋ผ๊ณ  ๋งŽ์ด๋“ค ๊ฐ€๋ฅด์น˜๋Š”๋ฐ, 'we'๋ฅผ ์จ๋„ ๊ดœ์ฐฎ๋‹ค.
    • ๋…ผ๋ฌธ์€ ์ฃผ์žฅ๊ธ€์ด๊ธฐ ๋•Œ๋ฌธ! ๋‹ค๋งŒ methodology ๋ถ€๋ถ„์—์„œ๋Š” ๋„ˆ๋ฌด ๋งŽ์ด ์“ฐ์ง€ ๋ง ๊ฒƒ
  • ์œ„์ธ ์ด๋ฆ„์€ ์ฒซ ๊ธ€์ž ๋Œ€๋ฌธ์ž๋กœ!
    • e.g., Kalman filter, Gauss-Newton optimization, Lyapunov stability, Fourier transform, Euler angle, Talyor series, Rodrigues' rotation formula, etc
  • Eigenvector์™€ eigenvalue๋Š” no space๋กœ ๋ถ™์—ฌ ์จ์•ผ ํ•จ
  • Keypoint๋„ key point๋ผ๊ณ  ์“ฐ๋Š” ๊ฑฐ ๋ณด๋‹ค ๋ถ™์—ฌ ์“ฐ๋Š” ๊ฒŒ ๋งž์Œ
  • ์˜์–ด์—์„œ๋Š” 1~5์™€ ๊ฐ™์ด ๋ฒ”์œ„๋ฅผ ๋‚˜ํƒ€๋‚ผ ๋•Œ๋Š” 1-5๋กœ ๋‚˜ํƒ€๋ƒ„. ~๋Š” approximated์˜ ์˜๋ฏธ๋กœ ์‚ฌ์šฉ๋จ.
  • Hyphen(-)์„ ๋‚จ์šฉํ•˜์ง€ ๋ง์ž. ๋ถ€์‚ฌ + ํ˜•์šฉ์‚ฌ์—๋Š” ๊ตณ์ด -์„ ์“ธ ํ•„์š” ์—†์Œ. ๋ช…์‚ฌ + ํ˜•์šฉ์‚ฌ์˜ ๊ฒฝ์šฐ์—๋งŒ -๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.
    • e.g. tightly-coupled (x), tightly coupled (o), outlier-robust (o)
  • ๋ญ์‹œ๊ธฐ-based๋กœ ์“ธ ๋•Œ๋Š” ๊ผญ hyphen์„ ๋„ฃ์–ด์•ผ ํ•จ
    • ResNet based approach (x), ResNet-based approach (o)
      • ์œ„์˜ ๋ช…์‚ฌ + ํ˜•์šฉ์‚ฌ์˜ ์ผ€์ด์Šค์™€ ๊ฐ™์Œ
  • ๋ถ€์‚ฌ๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ๋™์‚ฌ ์•ž์— ๋ฐฐ์น˜ํ•˜๋Š” ๊ฒŒ ๋” clearํ•จ (๊ทผ๋ฐ Grammarly๋Š” ์ œ์ผ ๋’ค์— ๋ฐฐ์น˜ํ•˜๋ผ๊ณ  ํ•จ ์ฃผ์˜. Grammarly๋ฅผ ๋”ฐ๋ฅด์ง€ ๋ง์ž)
    • e.g., enhanced [...] effectively (x), effectively enhanced (o)

์˜์–ด ๊ณต๋ถ€ํ•  ๋•Œ ์ฝ์–ด๋ณด๋ฉด ์ข‹์€ ๊ธ€/๋…ผ๋ฌธ๋“ค (To ๋‚˜์˜ ๋ฏธ๋ž˜ ๋Œ€ํ•™์›์ƒ๋“ค์—๊ฒŒ)

  • RSS Pioneers๋“ค์˜ research statement
    • ๋‚ ๊ณ  ๊ธฐ๋Š” Robotics/Robotic Vision ๋ถ„์•ผ ๋ฐ•์‚ฌ ๋ง๋…„์ฐจ ์นœ๊ตฌ๋“ค์ด ์˜ค๋กœ์ง€ 2์žฅ์งœ๋ฆฌ ๊ธ€๋งŒ์œผ๋กœ ์„ ์ •๋˜๋Š”, ๋งค์šฐ ๊ฒฝ์Ÿ์ด ์น˜์—ดํ•œ ๊ธ€๋“ค์ž„. ๋”ฐ๋ผ์„œ ์ˆ˜์ค€์ด ๋‚ฎ์€ ๊ธ€์€ ๋ชจ๋‘ ํƒˆ๋ฝํ•˜๊ณ , ์ข‹์€ ๊ธ€๋งŒ ์‚ด์•„๋‚จ์•„์„œ ์˜์–ด ๊ณต๋ถ€ํ•  ๋•Œ ๋ฌธ์žฅ๋“ค์„ ํ†ต์งธ๋กœ ์™ธ์›Œ๋ณด๋Š” ๊ฒƒ์„ ์ถ”์ฒœํ•จ. ํŠนํžˆ, ์ด research statement๋“ค์˜ intro์—์„œ๋Š” robotics์˜ ๋‹ค๋ฅธ ๋ถ„์•ผ ์‚ฌ๋žŒ๋“ค๋„ ์ดํ•ด๋ฅผ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ์‰ฝ๊ฒŒ ์“ฐ๋ ค๊ณ  ๋…ธ๋ ฅํ•œ ํ”์ ๋“ค์ด ๋งŽ์ด ์—ฟ๋ณด์ด๋Š”๋ฐ, ๊ทธ๋Ÿฐ ํ…Œํฌ๋‹‰๋“ค์„ ์ค์คํ•ด๋ณด๋ฉด ์ข‹์„๋“ฏ
  • ERASOR2, RSS'23
  • HeLiMOS, IROS'24
  • KISS-Matcher, ICRA'25

"์•„๋‹ˆ ใ…‹ใ…‹ ๋‚˜๋ฅด์‹œ์‹œ์ŠคํŠธ ๋ญ๋ƒ๊ณ " ํ•  ์ˆ˜๋„ ์žˆ๊ฒ ์ง€๋งŒ, ์œ„์˜ ๋…ผ๋ฌธ๋“ค์€ ๋‘ ๋ช… ์ด์ƒ์˜ ๊ต์ˆ˜๋‹˜์ด ์—ฌ๋Ÿฌ ๋ฒˆ ๊ฒ€ํ† ํ•ด ์ค€ ๊ธ€์ด๋ผ ํŠน์ • ๊ฐœ์ธ์˜ ํŽธํ–ฅ์ด ์ƒ๋Œ€์ ์œผ๋กœ ์ ๋‹ค๊ณ  ์ƒ๊ฐํ•จ. ๋˜ํ•œ, ๋‚˜์˜ scientific writing์— ๋Œ€ํ•ด ๋งํ•˜์ž๋ฉด, ๋ช…ํ˜„ ๊ต์ˆ˜๋‹˜๊ป˜ ๋…ผ๋ฌธ์„ ์—„๋ฐ€ํ•˜๊ฒŒ ์“ฐ๋Š” ํ…Œํฌ๋‹‰๋“ค์„ ์ง/๊ฐ„์ ‘์ ์œผ๋กœ ๋งŽ์ด ๋ฐฐ์›Œ์„œ ์–ด๋А์ •๋„ ๊ธ€์„ ์ž˜ ์“ด๋‹ค๊ณ  ์ƒ๊ฐํ•˜๊ณ  ์žˆ์—ˆ๋Š”๋ฐ, 22๋…„์— Cyrill ๊ต์ˆ˜๋‹˜ ๋žฉ์— visiting scholar๋กœ ๊ฐ€์„œ '๋…์ž๊ฐ€ ์ฝ๊ธฐ ํŽธํ•œ ๊ธ€์„ ์“ฐ๋Š” ๋ฒ•'์— ๋Œ€ํ•ด์„œ ์•„๋ž˜์™€ ๊ฐ™์ด (๊ฐ์‚ฌํ•˜๊ฒŒ๋„) ํ˜น๋…ํ•˜๊ฒŒ ํŠธ๋ ˆ์ด๋‹ ๋‹นํ•จ:

image

(+ Cyrill ๊ต์ˆ˜๋‹˜์˜ ์ด scientific writing ๊ฐ•์ขŒ๋ฅผ ๊ผญ ๋ณผ ๊ฒƒ์„ ์ถ”์ฒœ)

๊ทธ๋ž˜์„œ 2023๋…„ ์ดํ›„์˜ ๊ธ€๋“ค์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์š”์†Œ๋ฅผ ๋ชจ๋‘ ์žก์œผ๋ ค๊ณ  ๋…ธ๋ ฅํ–ˆ์œผ๋ฉฐ, ๊ทธ๋ž˜์„œ ๋Œ€์ฒด๋กœ ์ž˜ ์“ฐ์—ฌ์กŒ๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค(๋ฌผ๋ก  ๋‚ด ๊ธฐ์ค€์ž„). ๊ทธ๋ฆฌ๊ณ  ๋‚ด๊ฐ€ ๋…ผ๋ฌธ figure์— ๊ต‰์žฅํžˆ ์ง„์‹ฌ์ด๊ธฐ ๋•Œ๋ฌธ์—, '์ข‹์€ figure'๊ฐ€ ๋ฌด์—‡์ผ์ง€๋„ ์ƒ๊ฐํ•ด๋ณด๋ฉด ์ข‹์„ ๊ฒƒ.


Basic

  • ์ค‘์š”1: Latex์—์„œ ํ•œ ๋ฌธ์žฅ ๋‹น ํ•œ ์ค„์— ์“ธ ๊ฒƒ. Latex์€ Word์ฒ˜๋Ÿผ ๋ฌธ๋‹จ ๋‹จ์œ„๋กœ ์ฃผ์ €๋ฆฌ์ฃผ์ €๋ฆฌ ์“ฐ๋Š”๊ฒŒ ์•„๋‹˜!.
    • C++๊ณผ ๊ฐ™์€ compile ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ์ƒ๊ฐ์œผ๋กœ '์ฝ”๋”ฉ'ํ•˜๋Š” ๊ฑฐ์ž„ #1
    • ์‹ค์ œ๋กœ ์ €๋Š” 24๋…„๋ถ€ํ„ฐ ๋…ผ๋ฌธ writing๋„ vim์œผ๋กœ ํ•˜๋Š” ๊ฑธ๋กœ ์™„์ „ํžˆ ์ •์ฐฉํ•จ...Latex์€ '์ฝ”๋”ฉ'์ด๋‹ค!
      • (ํ–ฅํ›„ ์ด ๊ด€์ ์—์„œ ์™œ overleaf์„ ์“ฐ๋Š”๊ฒŒ fxxking shit์ธ์ง€ ์„ค๋ช… ์˜ˆ์ •) image
  • ์ค‘์š”2: \newcommand๋ฅผ ๋ฐ˜๋“œ์‹œ ์‚ฌ์šฉํ•  ๊ฒƒ.
    • ์œ„์˜ Rule#3์˜ ๋งˆ์Œ๊ฐ€์ง์œผ๋กœ, ํœด๋จผ ์—๋Ÿฌ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ฐ˜๋“œ์‹œ ์˜๋ฏธ๋ก ์ ์œผ๋กœ ๋™์ผํ•œ ๋ณ€์ˆ˜์˜ ๊ฒฝ์šฐ๋Š” \newcommand๋ฅผ ์จ์„œ ๊ธ€์„ ์ด์–ด ๋‚˜๊ฐ€์ž.
    • C++, Python์€ ํ•˜๋“œ ์ฝ”๋”ฉํ•˜์ง€ ๋ง๋ผ๊ณ  ๊ทธ๋ ‡๊ฒŒ ๊ฐ€๋ฅด์น˜๋ฉด์„œ, ์™œ Latex์€ ํ•˜๋“œ์ฝ”๋”ฉํ•˜๋Š”๊ฐ€? ๋ฐ˜๋“œ์‹œ \newcommand๋ฅผ ํ™œ์šฉํ•  ๊ฒƒ.
      • ์™œ๋ƒํ•˜๋ฉฐ ๊ธ€์„ ์“ฐ๋‹ค ๋ณด๋ฉด ๊ธฐ์กด์— ์„ ์–ธํ•œ ๋ณ€์ˆ˜๋ฅผ ๋”์šฑ ๋‘๋“œ๋Ÿฌ์ง€๊ฒŒ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋Š” ๋ณ€์ˆ˜๋กœ ๋ฐ”๊พธ๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ.
        • Latex ์ฝ”๋“œ๋„ ๊ต์ˆ˜๋‹˜๊ณผ์˜ ์ฒจ์‚ญ ๊ณผ์ •์—์„œ ๋งŽ์€ ๋ถ€๋ถ„์ด ์ˆ˜์ •๋˜๊ธฐ ๋•Œ๋ฌธ์—, '์ˆ˜์ •์„ ๋” ์šฉ์ดํ•˜๊ฒŒ' ๋ฏธ๋ฆฌ ์งœ๋‘๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค.
      • ์ •์‹  ์ฐจ๋ฆฌ๊ณ  ์“ฐ๋ฉด ๋œ๋‹ค๊ณ ? ๋‹ค ๋‚ด๊ฐ€ ์•„๋ž˜์™€ ๊ฐ™์ด ํœด๋จผ ์—๋Ÿฌ๋ฅผ ์˜๊ตฌํžˆ ๋ฐ•์ œ๋‹นํ•œ ๊ฒฝํ—˜์œผ๋กœ ํ”ผํ† ํ•˜๋ฉฐ ์–ป์€ ๊ตํ›ˆ์ด๋‹ˆ ๊ผญ ์ข€ ๋”ฐ๋ผ ์ฃผ๊ธธ...
        • ์•„๋ž˜๋Š” i๋ผ๊ณ  ์“ฐ๋‹ค๊ฐ€ k๋ผ๊ณ  ์“ฐ๋Š” ๊ฒŒ ๋” ์ข‹์„ ๊ฑฐ ๊ฐ™๋‹ค๊ณ  ์ƒ๊ฐํ•ด ๋ฐ”๊พธ๋‹ค๊ฐ€ ๋ฏธ์ฒ˜ ๋ฐœ๊ฒฌํ•˜์ง€ ๋ชปํ•œ typo; see (6).
        • ๋…ผ๋ฌธ์— Typo ๋‚ด๋ฉด ๊ฝค๋‚˜ ๋ถ€๋„๋Ÿฝ๋‹ค... ๐Ÿฅฒ๐Ÿฅฒ๐Ÿฅฒ
    • ์‹ค์ˆ˜ ์˜ˆ์‹œ 1. ๋…ผ๋ฌธ์„ ์ฒ˜์Œ ์“ฐ๋ฉด ๋‹ค๋ฅธ ํ˜•ํƒœ์˜ ๋ฌธ์ž != ๋‹ค๋ฅธ ๋ณ€์ˆ˜๋ผ๋Š” ๊ฐœ๋…์ด ์ž˜ ์žกํ˜€์žˆ์ง€ ์•Š์•„์„œ ์•„๋ž˜์™€ ๊ฐ™์ด k๋ฅผ ๋‹ค๋ฅธ ํ‘œ๊ธฐ๋กœ ํ•˜๋Š” ๋“ฑ์˜ ์‹ค์ˆ˜๋ฅผ ๋นˆ๋ฒˆํžˆ ํ•จ.
      • Sol) k๋ฅผ \newcommand{\timestep}{k}์™€ ํ‘œํ˜„ํ•ด์„œ ์‹ธ์šฉํ•˜๋ฉด ํœด๋จผ ์—๋Ÿฌ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ์Œ

wrong_ks

  • ์‹ค์ˆ˜ ์˜ˆ์‹œ 2. ์‹ค์ œ๋กœ MambaGlue๋ฅผ ์ž‘์„ฑํ•  ๋•Œ ์ตœ์ข… ๋‹จ๊ณ„์—์„œ ์•„๋ž˜์™€ ๊ฐ™์ด ๋ณ€์ˆ˜๊ฐ€ vector์ด๊ธฐ ๋–„๋ฌธ์— \matbhf{}๋ฅผ ํ•ด์•ผํ•˜๋Š”๋ฐ ๊นœ๋นกํ•œ ์‹ค์ˆ˜๊ฐ€ ์žˆ์—ˆ์Œ.
    • Sol) \newcommand{\state}{\mathbf{x}}์ฒ˜๋Ÿผ ๋ฏธ๋ฆฌ ์ •์˜ํ•ด๋‘์—ˆ์œผ๋ฉด ์‹ ๊ฒฝ ์“ฐ์ง€ ์•Š์•„๋„ ๋  ๋ถ€๋ถ„์ธ๋ฐ, ์ผ์ผ์ด ํ™•์ธํ•ด์•ผ ํ•ด์„œ ๋ฒˆ๊ฑฐ๋กœ์›€

image

* ์•„๋ž˜๋Š” ํ˜„์žฌ ๋‚ด๊ฐ€ ์‹ค์ œ ๋…ผ๋ฌธ ์“ธ ๋•Œ์˜ ์˜ˆ์‹œ(KISS-Matcher์˜ Section III.A ์ฒซ ๋ถ€๋ถ„):
\newcommand{\corr}{\mathcal{A}}
\newcommand{\estoutliers}{\hat{\mathcal{O}}}
\newcommand{\srccloud}{\mathcal{P}}
\newcommand{\tgtcloud}{\mathcal{Q}}
\newcommand{\srcpoint}{\boldsymbol{a}}
\newcommand{\tgtpoint}{\boldsymbol{b}}
\newcommand{\srcidx}{i}
\newcommand{\tgtidx}{j}
\newcommand{\corridx}{k}
\newcommand{\srcpt}{\srcpoint_\srcidx}
\newcommand{\tgtpt}{\tgtpoint_\tgtidx}

Our objective is to align two unordered voxelized point clouds with a voxel size $v$, namely the source~$\srccloud$ and target~$\tgtcloud$ point clouds.
To this end, we establish correspondences between the two point clouds, which is followed by robust estimation to suppress the undesirable effect of outliers.

Formally, let us assume that the $\corridx$-th pair (or the $\corridx$-th correspondence) obtained through matching consists of the 3D point $\srcpt \in \srccloud$ and the 3D point $\tgtpt \in \tgtcloud$.
  • ์œ„์™€ ๊ฐ™์ด ์จ๋‘๋ฉด final proofreading ๋‹จ๊ณ„์—์„œ ๋…ผ๋ฌธ ๋‚ด์˜ ๋ชจ๋“  ๋™์ผํ•œ ๋ณ€์ˆ˜๋ฅผ ์†์‰ฝ๊ฒŒ, ์‹ค์ˆ˜ ์—†์ด ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ์œผ๋‹ˆ, ํœด๋จผ ์—๋Ÿฌ๋ฅผ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค!

  • ์ด๋Ÿฌํ•œ ๊ด€์ ์—์„œ Overleaf ์“ฐ์ง€ ๋ง๋ผ๊ณ  ํ•œ๊ฒƒ์ž„...Overleaf์—๋Š” file navigation system์ด ์—†์–ด์„œ ํŒŒ์ผ ๋‚ด/ํŒŒ์ผ-to-ํŒŒ์ผ ๊ฐ„ ์™”๋‹ค๊ฐ”๋‹ค ํ•˜๋Š”๊ฒŒ ํ•„์—ฐ์ ์œผ๋กœ ๋น„ํšจ์œจ์ ์ด๋‹ค :(

    • ๊ทธ๋Ÿฌ๋‹ˆ ๋‹ค๋“ค Microsoft word์—์„œ ๊ธ€ ์“ฐ๋“ฏ์ด ์ฃผ์ €๋ฆฌ์ฃผ์ €๋ฆฌ ์จ๋ฒ„๋ฆฌ๊ฒŒ ๋จ ใ… 
    • ์š”์ฆ˜์€ vscode๋‚˜ Pycharm์—์„œ๋„ Latex compile์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ฐ€๋Šฅํ•œ ์ž์‹ ์ด ์›๋ž˜ ์“ฐ๋˜ IDE์—์„œ Latex ์ž‘์—…๋„ ํ–ˆ์œผ๋ฉด...
  • ์ค‘์š”3: Latex์— ์ƒ๊ฐ๋ณด๋‹ค ์ž๋™ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์šฉํ•œ packages๊ฐ€ ๋งŽ์œผ๋‹ˆ, ์ž˜ ํ™œ์šฉํ•˜์ž

  • \usepackage{cite}: ์•„๋ž˜์™€ ๊ฐ™์ด citation์„ ๊ฐ„๋žตํ•˜๊ฒŒ ์จ์ฃผ๊ณ , ์ˆœ์„œ๋„ ์•Œ์•„์„œ ์ ์ ˆํžˆ ์ˆ˜์ •ํ•ด์ฃผ๋Š” ์—ญํ• ์„ ํ•จ - Compresses numerical citations: \cite{ref41,ref42,ref43,ref44,ref45,ref46} โ†’ [41โ€“46] - Orders them automatically even if you write \cite{ref43,ref41,ref42} โ†’ [41โ€“43] - natbib์™€ ๋™์‹œ์— ์‚ฌ์šฉํ•˜๋ฉด ์ถฉ๋Œ์ด ๋‚  ์ˆ˜๋„ ์žˆ์Œ
  • \usepackage{cleveref}: ๋ฒˆ๊ฑฐ๋กญ๊ฒŒ Fig.~\ref{fig:fig1}์™€ ๊ฐ™์ด ์•ˆ ์จ๋„ ๋˜๊ณ  \Cref{fig:fig1}์™€ ๊ฐ™์ด ๊ฐ„๋žตํ•˜๊ฒŒ ํ‘œํ˜„ํ•˜๋ฉด, Table์ด๋“  Fig๋“  ์•Œ์•„์„œ pointingํ•ด ์คŒ. ์•„๋ž˜์™€ ๊ฐ™์ด ์ถ”๊ฐ€์ ์ธ ๋ช…๋ น์–ด๋“ค๋กœ ๊ฐ ์š”์†Œ๋ฅผ ์–ด๋–ป๊ฒŒ referํ• ์ง€๋„ ์„ธํŒ…ํ•  ์ˆ˜ ์žˆ์Œ. ๊ทผ๋ฐ ์„ ์–ธํ•  ๋•Œ \usepackage{hyperref}๋ฅผ ์„ ์–ธํ•œ ํ›„์— ์„ ์–ธํ•ด ์ค˜์•ผ ํ•จ. ์•„๋ž˜๋Š” ํฌ๋งคํŒ…์„ ๋ฐ”๊พธ๋Š” ์˜ˆ์‹œ
\renewcommand{\figurename}{Fig.} % 'Figure' to 'Fig.'

\Crefname{section}{Sec.}{Secs.} 
\Crefname{figure}{Fig.}{Figs.} 
\Crefname{table}{Table}{Tables} 
% To simplify Equation (#) to (#)
\crefname{equation}{}{}
\Crefname{equation}{}{}
  • ๊ฐœ์ธ ์ทจํ–ฅ์ด์ง€๋งŒ "Fig. #:"๋‚˜ "Table #:"๋ฅผ ๊ฐ๊ฐ "Fig. #."์™€ to "Table #."๋กœ ๋ฐ”๊พธ๊ธฐ ์œ„ํ•ด์„œ๋Š”
\captionsetup[figure]{labelformat={default},labelsep=period,name={fig.}}
\captionsetup[table]{labelformat={default},labelsep=period,name={table}}

๋ฅผ ์„ธํŒ…ํ•˜๋ฉด ๋จ.

NOTE: ์ € ์ (.)์˜ ์˜๋ฏธ๋Š” ์•ฝ์–ด์ž„์„ ๋‚˜ํƒ€๋‚ด๋Š” ์šฉ๋„์ด๊ธฐ ๋•Œ๋ฌธ์—, Table์˜ ๊ฒฝ์šฐ ๋’ค์— .์ด ์˜ค๋ฉด ์•ˆ ๋œ๋‹ค. ๋…ผ๋ฌธ์„ ์ฒ˜์Œ ์“ฐ๋Š” ํ›„๋ฐฐ๋“ค์ด ๋นˆ๋ฒˆํžˆ ์‹ค์ˆ˜ํ•˜๋Š” ๋ถ€๋ถ„.

  • ์˜ˆ์‹œ: Table 1 (o), Table. 1 (x)

Misc

  • %๊ฐ€ ์˜ค๋ฅด๋Š” ๊ฑด์ง€, %p๊ฐ€ ์˜ค๋ฅด๋Š” ๊ฑด์ง€ ์ž˜ ๋ถ„๊ฐ„ํ•ด์•ผ ํ•จ.
    • 10%์—์„œ 20%๋กœ ์˜ค๋ฅด๋ฉด 10% ์˜ค๋ฅธ ๊ฒŒ ์•„๋‹ˆ๋ผ 100%์˜ค๋ฅธ ๊ฑฐ๊ณ , 10%p๊ฐ€ ์˜ค๋ฅธ ๊ฒƒ์ž„.
  • ์ˆซ์ž์™€ ๋‹จ์œ„ ์‚ฌ์ด์—๋Š” ์ŠคํŽ˜์ด์Šค๊ฐ€ ํ•„์š”ํ•จ
    • Latex์—๋Š” ๋ฐ˜์ŠคํŽ˜์ด์Šค(\,)๊ฐ€ ์กด์žฌ. ๋‹จ์œ„์™€ ์ˆซ์ž ์‚ฌ์ด์—๋Š” \,๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒŒ ๋” ์˜ˆ์จ
      • e.g., 20\,m์™€ ๊ฐ™์ด
    • ์ˆซ์ž์™€ %๋Š” no space๋กœ ๋ถ™์—ฌ ์จ์•ผ ํ•จ
      • e.g., 10%, 20%์™€ ๊ฐ™์ด
  • (๋‚˜์˜ ์ทจํ–ฅ) ๋…ผ๋ฌธ์—์„œ ์“ฐ๋Š” parameter๊ฐ€ ์œ ์ €๊ฐ€ ์ •ํ•ด์ฃผ๋Š” ๊ฐ’์ด๋ผ๋ฉด 'user-defined'๋ฅผ ๊ผญ ๋ถ™์ด์ž.
    • ํ•ด๋‹น ๋ณ€์ˆ˜๊ฐ€ ์–ด๋–ค ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธํ•˜๋Š” ๊ฑด์ง€, ์™ธ๋ถ€์˜ ์œ ์ €๋กœ๋ถ€ํ„ฐ ์˜ค๋Š” ๊ฑด์ง€ ๋ช…ํ™•ํ•˜๊ฒŒ ๋ฐํžˆ๊ธฐ ์œ„ํ•ด.

Figures & Tables

  • ์ˆซ์ž๊ฐ€ ์žˆ๋‹ค๋ฉด ๋‹จ์œ„๊ฐ€ ์ž˜ ๊ธฐ์ž…๋˜์—ˆ๋Š”์ง€ ๋ฐ˜๋“œ์‹œ ํ™•์ธํ•˜์ž.
    • ์ˆซ์ž ์ž์ฒด๊ฐ€ ์ค‘์š”ํ•œ ๊ฒŒ ์•„๋‹ˆ๋ผ '๋ฌด์—‡์˜' ์ˆซ์ž์ธ์ง€๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒŒ ํ›จ์”ฌ ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์žŠ์ง€ ๋ง์ž.

Structure of Manuscript

๋…ผ๋ฌธ์„ ํ•œ ๋ฒˆ๋„ ์•ˆ ์จ๋ณธ ์ด๋Š” ๋‚˜์˜ ๋ธŒ๋Ÿฐ์น˜ ๊ธ€์„ ํ•œ ๋ฒˆ ์ฝ์–ด๋ณด๋ฉด ๊ฐ์ด ์˜ค๋ฆฌ๋ผ ์ƒ๊ฐ๋œ๋‹ค.

Abstract

  • ํฌ๋งท ๊ด€๋ จ
    • Abstract๋Š” manuscript์™€ ์™„์ „ํžˆ ๋…๋ฆฝ๋œ, ํ•˜๋‚˜์˜ paragraph์ž„
      • ๋ณธ๋ฌธ์— ์•ฝ์–ด๋ฅผ full๋กœ ์ผ๋”๋ผ๋„ abstract์—์„œ๋Š” ๋‹ค์‹œ ํ•ด๋‹น ์•ฝ์–ด๋ฅผ ํ’€์–ด์„œ ์จ์•ผ ํ•จ.
      • Abstract์—์„œ ๋ฌธ๋‹จ ๋‚˜๋ˆ„์ง€ ๋ง ๊ฒƒ
  • ๋‚ด์šฉ ๊ด€๋ จ
    • Abstract์—์„œ๋Š” ์•„๋ž˜์™€ ๊ฐ™์€ ๊ตฌ์กฐ๋กœ ๋…ผ๋ฌธ์„ ์ ์ž (๊ทผ๋ฐ ์ง€๋„ ๊ต์ˆ˜๋‹˜์˜ writing ์Šคํƒ€์ผ์— ๋”ฐ๋ผ 'Why'๋ฅผ ์ƒ๋žตํ•˜๊ณ  ๋ฐ”๋กœ 'In this paper, -'๋กœ ์‹œ์ž‘ํ•˜๋Š” ๊ฑธ ์„ ํ˜ธํ•˜๋Š” ๊ต์ˆ˜๋‹˜๋„ ๊ณ„์‹œ๋ฏ€๋กœ, ์—ฐ๊ตฌ์‹ค์—์„œ ์ด์ „์— ์ œ์ถœํ–ˆ๋˜ ๊ธ€์˜ flow๋ฅผ ๊ผญ ํ•œ๋ฒˆ ์ฒดํฌํ•˜์ž.)
      • WHY?: 1~2๋ฌธ์žฅ์œผ๋กœ ์—ฐ๊ตฌ์˜ ์ค‘์š”์„ฑ์„ ๋ช…ํ™•ํ•˜๊ฒŒ ์„ค๋ช…ํ•  ๊ฒƒ. ์ด ์—ฐ๊ตฌ๊ฐ€ ์™œ ์ค‘์š”ํ•œ๊ฐ€? ์™œ ๋…์ž๊ฐ€ ๊ด€์‹ฌ์„ ๊ฐ€์ ธ์•ผ ํ•˜๋Š”๊ฐ€?
      • WHICH PROBLEM?: ๋…ผ๋ฌธ์—์„œ ๋‹ค๋ฃจ๋Š” ๋ฌธ์ œ๋ฅผ ํ•œ ๋ฌธ์žฅ์œผ๋กœ ๊ฐ„๋‹จํžˆ ์„ค๋ช…
      • HOW & WHAT?: ์—ฐ๊ตฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ์ฃผ์š” ๋‚ด์šฉ์„ ์•ฝ 3๋ฌธ์žฅ ์ •๋„๋กœ ์„ค๋ช…
        • ๋„ˆ๋ฌด ๊ตฌ์ฒด์ ์œผ๋กœ method ์ด๋ฆ„์„ ์ฃผ์ €๋ฆฌ ์ฃผ์ €๋ฆฌ ๋‚˜์—ดํ•˜์ง€ ๋ง ๊ฒƒ
        • ์ผ๋ฐ˜์ ์œผ๋กœ ์ด ๋ฌธ์ œ๋ฅผ ์–ด๋–ป๊ฒŒ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์ด ๋…ผ๋ฌธ์—์„œ์˜ ์ ‘๊ทผ ๋ฐฉ์‹์ด ํŠน๋ณ„ํ•œ ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€ + ์ˆ˜ํ–‰ํ•œ ํ•ต์‹ฌ ๋‚ด์šฉ๊ณผ ์ƒˆ๋กœ์šด ์ ์€ ๋ฌด์—‡์ธ๊ฐ€๋ฅผ ๊ฐ•์กฐํ•˜๊ธฐ
      • ์‹คํ—˜์„ ํ†ตํ•ด ๋ญ˜ demonstrateํ–ˆ๋Š”์ง€ 1-2๋ฌธ์žฅ์œผ๋กœ ์ž‘์„ฑ

Introduction

์•„๋ž˜์™€ ๊ฐ™์€ flow๋กœ ์ž‘์„ฑํ•  ๊ฒƒ

  • WHY

    • ๋จผ์ €, Abstract์—์„œ๋Š”์˜ WHY ์งˆ๋ฌธ์„ ํ’€์–ด์„œ ์ž‘์„ฑ
      • ์ด ์—ฐ๊ตฌ๋Š” ์™œ ์ค‘์š”ํ•œ๊ฐ€? ์™œ ๋…์ž๊ฐ€ ์ด ๋…ผ๋ฌธ์„ ์ฝ์–ด์•ผ ํ•˜๋Š”๊ฐ€?
      • ์™œ ์ด ๋ฌธ์ œ์— ๊ด€์‹ฌ์„ ๊ฐ€์ ธ์•ผ ํ•˜๋Š”๊ฐ€? (1๊ฐœ ๋‹จ๋ฝ, 2~5๋ฌธ์žฅ)
  • WHICH PROBLEM

    • ๋‹ค์Œ์œผ๋กœ, ๋…ผ๋ฌธ์—์„œ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ๋ฌธ์ œ๋ฅผ ์„ค๋ช… & ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์˜ ํ•œ๊ณ„์ ์„ ๊ฐ„๋žตํžˆ ๋ช…์‹œ
      • ์ฃผ์˜1: ๋‚ด ์—ฐ๊ตฌ์˜ ๋ฐ˜๋Œ€ ์ง„์˜ ์‚ฌ๋žŒ๋“ค์ด ์ฝ๋”๋ผ๋„ ๋™์˜ํ•  ์ˆ˜ ์žˆ๊ฒŒ ์œ ์ˆœํ•˜๊ฒŒ ์ž‘์„ฑํ•˜๋Š”๊ฒŒ ์ค‘์š”ํ•จ
      • ์ฃผ์˜2: ๋‚ด opinion๊ณผ fact๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„์ง€์–ด์„œ ์ฃผ์žฅํ•˜์ž.
      • E.g., ๋…ผ๋ฌธ์„ ์ฒ˜์Œ ์“ธ ๋•Œ ``LiDAR sensors are mainly utilized for the perception of robots, as they are relatively accurate compared to other depth sensor.''์ด๋ผ๊ณ  ์ ์€ ์ ์ด ์žˆ๋Š”๋ฐ, ์ด ๋ฌธ์žฅ ํ•˜๋‚˜๋กœ reject๋œ ์ ์ด ์žˆ์Œ
        • Camera ์ง„์˜์—์„œ ๋ณด์•˜์„ ๋•Œ๋Š” '์•„๋‹Œ๋ฐ? LiDAR ๊ฐ’์ด ๋น„์‹ธ์„œ mainly utilized๋˜์ง„ ์•Š๋Š”๋ฐ? camera๊ฐ€ ๋” ๋งŽ์ด ์“ฐ์ด๋Š”๋ฐ? ๋‹˜ overclaim์ž„ ใ……ใ„ฑ'๋ผ๊ณ  ๋ฐ˜๋ฐ•ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž„.
        • ์ง€๊ธˆ์˜ ๋‚˜๋ผ๋ฉด 'As LiDAR sensors measure distances using the time of flight of laser rays, they are likely to be more accurate than other depth sensors.'์™€ ๊ฐ™์€ ์‹์œผ๋กœ ์ผ์„ ๋“ฏ
          • Laser ray๋ฅผ ํ™œ์šฉํ•ด์„œ ToF๋ฅผ ์ธก์ •ํ•ด์„œ ๊ฑฐ๋ฆฌ๋ฅผ ์žฌ๋Š” ๋ฐฉ์‹์ด ๋‹ค๋ฅธ depth measurement ๋ฐฉ์‹๋ณด๋‹ค ์ •ํ™•ํ•œ ๊ฑด ๋‚ด opinion์ด ์•„๋‹Œ fact์ด๊ธฐ ๋•Œ๋ฌธ
          • ์—ฌ๊ธฐ์„œ๋„ definiteํ•˜๊ฒŒ ๋ชจ๋“  other depth sensors๋ณด๋‹ค ๋ฌด์กฐ๊ฑด์ ์œผ๋กœ ์ข‹๋‹ค๊ณ ๋Š” ๋งํ•  ์ˆ˜ ์—†์œผ๋ฏ€๋กœ(์šฐ๋ฆฌ๊ฐ€ ๋ชจ๋ฅด๋Š” 2์–ต์งœ๋ฆฌ depth sensor๊ฐ€ ์žˆ์„ ์ˆ˜๋„ ์žˆ์œผ๋‹ˆ), 'likely to be' (๋Œ€์ฒด๋กœ ๊ทธ๋Ÿผ~)์ด๋ผ๊ณ  ๋‹ค์†Œ ์œ ์ˆœํ•˜๊ฒŒ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์Œ.
  • HOW & WHAT

    • ์„ธ ๋ฒˆ์งธ๋กœ, ์ผ๋ฐ˜์ ์œผ๋กœ ์ด ๋ฌธ์ œ๋ฅผ ์–ด๋–ป๊ฒŒ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์ชผ์˜ค๊ธˆ ๋” ๋””ํ…Œ์ผํ•˜๊ฒŒ ์„ค๋ช…ํ•˜๊ณ  ๊ธฐ์กด ์—ฐ๊ตฌ(ํƒ€ ์—ฐ๊ตฌ์ž๋“ค์ด๋‚˜ ์ด์ „ ์—ฐ๊ตฌ)์—์„œ ์–ด๋–ค ์ ‘๊ทผ๋ฒ•์ด ์‚ฌ์šฉ๋˜์—ˆ๋Š”์ง€ ์–ธ๊ธ‰

      • ๊ทธ๋ ‡๋‹ค๊ณ  ์—ฌ๊ธฐ์„œ 'Lim et al.~\cite{BLABLA} proposed'์™€ ๊ฐ™์ด ๋„ˆ๋ฌด ๋”ฅํ•˜๊ฒŒ ๋‚˜์—ดํ•˜์ง€๋Š” ๋ง ๊ฒƒ. ์ด ๋‚˜์—ด์€ related works๋กœ ๊ฐ€์•ผ ํ•จ.
    • ๋ณธ ์—ฐ๊ตฌ์˜ ๊ธฐ์—ฌ ๋‚ด์šฉ์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ์ค€๋น„ ๋‹จ๊ณ„๋กœ ํ™œ์šฉํ•  ๊ฒƒ

      • ๊ทธ๋Ÿฌ๋‚˜ ์—ฌ๊ธฐ์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ๊ธฐ์—ฌ๋ฅผ ์ง์ ‘์ ์œผ๋กœ ์„ค๋ช…ํ•˜์ง€๋Š” ๋ง ๊ฒƒ! ๋‹ค์Œ ๋ฌธ๋‹จ์„ ์œ„ํ•œ bridge๋กœ์„œ ํ™œ์šฉํ•ด์•ผ ํ•จ
    • ๋…ผ๋ฌธ์˜ motivation์„ ์ดํ•ด์‹œํ‚ค๋Š” Fig. 1 ์ž˜ ๊ทธ๋ฆฌ๊ธฐ

      • TBU
  • MAIN CONTRIBUTION & WHAT FOLLOWS FROM THAT

    • ์ค‘์š”: ๋ณธ ์—ฐ๊ตฌ์˜ ๊ธฐ์—ฌ๋ฅผ ํ•œ ๋‹จ๋ฝ์œผ๋กœ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•˜๊ธฐ
    • ์ž˜ ๋ชจ๋ฅด๊ฒ ์œผ๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์Šต๋‹ˆ๋‹ค:
      • "The main contribution of this paper is a ..."

Related works

  • ํฌ๋งท ๊ด€๋ จ

    • ํŽ˜์ด์ง€ ์ˆ˜๊ฐ€ ์•„๋ฌด๋ฆฌ ๋ถ€์กฑํ•˜๋”๋ผ๋„(e.g., ICRA์˜ 6์žฅ ์ œํ•œ์ด๋‚˜ RA-L์˜ 8์žฅ ์ œํ•œ) Related works์„ ์ƒ๋žตํ•˜์ง€๋Š” ๋ง์ž.
      • ์˜ˆ์ „์— Patchwork๋ฅผ ์“ธ ๋•Œ ํŽ˜์ด์ง€๊ฐ€ ๋ถ€์กฑํ•ด์„œ(8์žฅ ์ œํ•œ) 'Introduction and Related Works'๋ผ๊ณ  ํ•œ section์— ๋‘˜์„ ๋‹ค ์ ์–ด์„œ ์ œ์ถœํ•œ ์ ์ด ์žˆ์—ˆ๋Š”๋ฐ, reviewer๊ฐ€ ์ด ๋‘˜์„ ๋ถ„๋ฆฌํ•ด๋ผ๋Š” ์ฝ”๋ฉ˜ํŠธ๋ฅผ ์ค€ ์ ์ด ์žˆ์Œ.
      • ๋ฐ˜๋ฉด, Introduction๊ณผ Related Works๋ฅผ ๋ณ„๋„๋กœ ์ž‘์„ฑํ•œ ๊ฒฝ์šฐ, ์ด๋ฅผ ๋‹ค์‹œ ํ•ฉ์น˜๋ผ๋Š” ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›์„ ๊ฐ€๋Šฅ์„ฑ์€ ๊ฑฐ์˜ ์—†์œผ๋ฏ€๋กœ, ๊ฐ€๊ธ‰์ ์ด๋ฉด ๋‘ ์„น์…˜์„ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ตฌ์„ฑํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•จ.
        • ๊ธฐ์–ตํ•˜์ž. ๋…ผ๋ฌธ์€ ๋Š˜ ๋จน๋˜ ๋น„์Šทํ•œ ๋ง›์œผ๋กœ, ๋–จ์–ด์ง€์ง€ ์•Š๊ฒŒ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค.
  • ๋‚ด์šฉ ๊ด€๋ จ

    • ํŽ˜์ด์ง€ ์ œํ•œ์ด ์—†๋‹ค๋ฉด, ์ „๋žต์ ์œผ๋กœ (i) baseline approach์˜ ์ €์ž๊ฐ€ ์“ด ๋…ผ๋ฌธ ์ธ์šฉ์„ ์ถ”๊ฐ€๋กœ ๋” ํ•˜๊ณ  (ii) ๊ฐ€์žฅ ์ตœ์‹  ์—ฐ๋„์˜ ํ•™ํšŒ์˜ ๊ด€๋ จ ์—ฐ๊ตฌ๋ฅผ ๋ฐ˜๋“œ์‹œ reference์— ํฌํ•จํ•ด์•ผ ํ•œ๋‹ค(๋ชจ๋‘๋‹ค related works์—์„œ ์—ด๊ฑฐํ•ด๋ผ๋Š” ์˜๋ฏธ๊ฐ€ ์•„๋‹˜!)
      • ์˜ˆ๋ฅผ ๋“ค์–ด, static map building ๊ด€๋ จ ์—ฐ๊ตฌ์ธ๋ฐ ERASOR๋‚˜ ERASOR2๊ฐ€ ์ธ์šฉ์— ์—†๋Š” ๋…ผ๋ฌธ์ด ๋งŒ์•ฝ ๋‚˜์—๊ฒŒ ๋ฆฌ๋ทฐ๊ฐ€ ์˜จ๋‹ค๋ฉด? ๋ฐ”๋กœ ๋นˆ์ • ์ƒํ•จ ์ด์Šˆ๋กœ '์„ ํ–‰ ์—ฐ๊ตฌ๊ฐ€ ๋ถˆ์ถฉ๋ถ„ํ•˜๋‹ค'๋ผ๊ณ  ๋”ด์ง€ ๊ฑธ ์ˆ˜ ์žˆ๋‹ค.
    • ๋งˆ์ง€๋ง‰ ๋‹จ๋ฝ์—์„œ '์ตœ์ข…์ ์œผ๋กœ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค๊ณผ๋Š” ์š”๋Ÿฐ ์ ๋“ค์ด ๋‹ค๋ฅด๋‹ค'ํ•˜๋Š” ๊ฒƒ์„ ๋‹ค์‹œ ํ•œ ๋ฒˆ ๋” ๊ฐ•์กฐ

Methodology

  • (๋‚ด ์ทจํ–ฅ) Section์˜ ์ œ๋ชฉ์„ 'Method', ํ˜น์€ 'Methodology'๋ผ๊ณ  ์ ์ง€ ๋ง ๊ฒƒ.
    • ์ด๊ฑธ ๋ชจ๋ฅด๋Š” ์ด๊ฐ€ ์–ด๋”” ์žˆ๊ฒ ๋Š”๊ฐ€? ๊ทธ๋Ÿฌ๋‹ˆ method๊ฐ€ ์ •ํ™•ํžˆ ๋ญ˜ ์œ„ํ•จ์ธ์ง€ ๊ฐ„์ง€๋‚˜๊ฒŒ ํ•œ ๋ฒˆ ๋” ํ‘œํ˜„ํ•ด์ฃผ๋Š”๊ฒŒ ์ค‘์š”ํ•˜๋‹ค
      • e.g., "KISS-MATCHER: ROBUST, FAST, AND SCALABLE OUTLIER-ROBUST REGISTRATION"
  • ๋ฐ˜๋“œ์‹œ ๋…์ž์—๊ฒŒ ๊ฐœ์š”๋ฅผ ์ œ๊ณตํ•˜๊ณ , ๊ตฌ์ฒด์ ์ธ ๋ฐฉ๋ฒ•์„ ์„ค๋ช…ํ•  ๊ฒƒ.
  • ๋…ผ๋ฌธ์€ ๋…์ž๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ์ž‘์„ฑํ•ด์•ผ ํ•˜๋Š” ๊ธ€์ด๋‹ค. ๋จผ์ € ์ˆฒ์„ ๋ณด์—ฌ์ค€ ๋’ค ๋‚˜๋ฌด๋ฅผ ์„ค๋ช…ํ•˜๋Š” ๊ฒƒ๊ณผ, ๋ฐ”๋กœ ์ˆฒ์†์— ๋˜์ ธ๋ฒ„๋ฆฐ ์ฑ„ ๋‚˜๋ฌด๋งŒ ๊นŠ์ด ์„ค๋ช…ํ•˜๋Š” ๊ฒƒ์„ ๋น„๊ตํ–ˆ์„ ๋•Œ, ์ „์ž๊ฐ€ ํ›จ์”ฌ ๋” ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๋‹ค.

Experiment results

  • ๋…ผ๋ฌธ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋‹จ์ˆœํžˆ ํ‘œ(Table)๋กœ๋งŒ ์ œ์‹œํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค, ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ํ‘œํ˜„(e.g., ๊ทธ๋ž˜ํ”„, ์‹œ๊ฐ์  ๋น„๊ต, ๋„์‹ํ™”)์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”
    • ํ‘œ๋Š” N > 5์ธ baseline๋“ค๊ณผ ๋น„๊ตํ•  ๋•Œ ์ˆ˜์น˜๋ฅผ ๋ช…ํ™•ํ•˜๊ฒŒ ์ „๋‹ฌํ•˜๋Š” ๋ฐ ์œ ์šฉํ•˜์ง€๋งŒ, ์ง๊ด€์ ์ธ ์ดํ•ด๋ฅผ ๋•๋Š” ๊ฑด graph๊ฐ€ ๋” ํšจ๊ณผ์ 

Conclusion

  • ์‚ฌ์‹ค ๋…ผ๋ฌธ์˜ ๋‹น๋ฝ์— ํฌ๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€๋Š” ์•Š์Œ.
  • ๊ต์ˆ˜๋‹˜์— ๋”ฐ๋ผ ํ˜„์žฌ ์™„๋ฃŒํ˜•(have proposed. ํ˜„์žฌ๊นŒ์ง€ ์œ ํšจํ•˜๋‹ค๋Š” ์˜๋ฏธ๋ฅผ ๋‚ดํฌ)์ด๋‚˜ ๊ณผ๊ฑฐํ˜•(proposed. ๋ฌดํŠผ ๋…ผ๋ฌธ์ด ์ด๋ฏธ ์™„๋ฃŒ๋˜์—ˆ์Œ์„ ๊ฐ•์กฐ)์„ ์‚ฌ์šฉํ•˜๋Š” ์ทจํ–ฅ์ด ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ์—ฐ๊ตฌ์‹ค์—์„œ ์ด์ „์— ๋‚ธ ๋…ผ๋ฌธ๋“ค ๊ผญ ์ฐธ๊ณ ํ•  ๊ฒƒ
  • Future plan์„ ๊ฐ„๋žตํ•˜๊ฒŒ ํ•œ ๋ฌธ์žฅ์œผ๋กœ ์ž‘์„ฑ
    • ๊ทธ๋ ‡๋‹ค๊ณ  future plan์„ ์ž‘์„ฑํ•  ๋•Œ, '์šฐ๋ฆฌ ๋…ผ๋ฌธ์˜ ์น˜๋ช…์ ์ธ ์•ฝ์ ์„ ๋ณด์™„ํ•˜๊ฒ ๋‹ค'๋Š” ์‹์œผ๋กœ ์ ์–ด์„œ๋Š” ์•ˆ ๋จ.
      • ์˜คํžˆ๋ ค reviewer๊ฐ€ 'future plan์— ์ ์€ ๊ฒŒ ๋„ˆ๋ฌด ํฌ๋ฆฌํ‹ฐ์ปฌํ•ด๋ณด์ด๋Š”๋ฐ?' ํ•˜๊ณ  ํŠธ์ง‘ ์žก๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ.
      • real-world ๋กœ๋ด‡์— ์ ์šฉํ•ด ๋ณด๊ฒ ๋‹ค, ์†๋„๋ฅผ '๋”' ๋น ๋ฅด๊ฒŒ ํ•ด๋ณด๊ฒ ๋‹ค ๋“ฑ ์ง„๋ถ€ํ•˜์ง€๋งŒ ์ฑ… ์žกํžˆ์ง€ ์•Š๋Š” ์ „ํ˜•์ ์ธ ๋ฉ˜ํŠธ๋ฅผ ์“ฐ๋Š” ๊ฒƒ์ด ์ข‹๋‹ค
        • Example 1. KISS-Matcher์—์„œ๋Š” "In future works, we plan to apply our matching pipeline in mapping and localization applications."
        • Example 2. BUFFER-X์—์„œ๋Š” "In future works, we plan to study how to boost the inference speed for better usability."

About

(Korean) Latex writing checklist

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published