-
Notifications
You must be signed in to change notification settings - Fork 43
Instantaneous Lyapunov exponent for systems with parameter drift #345
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 6 commits
8752220
6e4fd9f
6460a9a
5009e5f
a51d9b8
c3560df
9ba8de6
33facf3
08d3e0d
90d71de
f95ed1b
09e11f4
5ae55a0
a30fa7c
d2dc1f7
9dca714
2aab94e
82fdf05
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
export ensemble_averaged_pairwise_distance,lyapunov_instant | ||
|
||
""" | ||
lyapunov_instant(ρ,times;interval=1:length(times)) -> λ(t) | ||
|
||
Convenience function that calculates the instantaneous Lyapunov exponent by taking the slope of | ||
the ensemble-averaged pairwise distance function `ρ` wrt. to the saved time points `times` in `interval`. | ||
""" | ||
function lyapunov_instant(ρ,times;interval=1:length(times)) | ||
rusandris marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
_,s = linreg(times[interval], ρ[interval]) #return estimated slope | ||
return s | ||
end | ||
|
||
""" | ||
ensemble_averaged_pairwise_distance(ds,init_states::StateSpaceSet,T;kwargs...) -> ρ,t | ||
|
||
Calculate the ensemble-averaged pairwise distance function `ρ` for non-autonomous dynamical systems | ||
with a time-dependent parameter. Time-dependence is assumed to be linear (sliding). To every member | ||
|
||
of the ensemble `init_states`, a perturbed initial condition is assigned. `ρ(t)` is the natural log | ||
of phase space distance between the original and perturbed states averaged over all pairs, calculated | ||
for all time steps up to `T`. | ||
|
||
This function implements the method described in | ||
https://doi.org/10.1016/j.physrep.2024.09.003. | ||
rusandris marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
||
## Keyword arguments | ||
|
||
* `sliding_param_rate_index = 0`: index of the parameter that gives the rate of change of the sliding parameter | ||
rusandris marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
* `initial_params = deepcopy(current_parameters(ds))`: initial parameters | ||
* `Ttr = 0`: transient time used to evolve initial states to reach | ||
initial autonomous attractor (without sliding) | ||
* `perturbation = perturbation_uniform`: if given, it should be a function `perturbation(ds,ϵ)`, | ||
which outputs perturbed state vector of `ds` (preferrably `SVector`). If not given, a normally distributed | ||
random perturbation with norm `ϵ` is added. | ||
rusandris marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
* `Δt = 1`: step size | ||
* `ϵ = sqrt(dimension(ds))*1e-10`: initial distance between pairs of original and perturbed initial conditions | ||
""" | ||
function ensemble_averaged_pairwise_distance(ds,init_states::StateSpaceSet,T;sliding_param_rate_index=0, | ||
initial_params = deepcopy(current_parameters(ds)),Ttr=0,perturbation=perturbation_uniform,Δt = 1,ϵ=sqrt(dimension(ds))*1e-10) | ||
|
||
set_parameters!(ds,initial_params) | ||
N = length(init_states) | ||
d = dimension(ds) | ||
dimension(ds) != d && throw(AssertionError("Dimension of `ds` doesn't match dimension of states in init_states!")) | ||
|
||
nt = length(0:Δt:T) #number of time steps | ||
ρ = zeros(nt) #store ρ(t) | ||
times = zeros(nt) #store t | ||
|
||
#duplicate every state | ||
#(add test particle to every ensemble member) | ||
init_states_plus_copies = StateSpaceSet(vcat(init_states,init_states)) | ||
|
||
#create a pds for the ensemble | ||
#pds is a ParallelDynamicalSystem | ||
pds = ParallelDynamicalSystem(ds,init_states_plus_copies) | ||
|
||
#set to non-drifting for initial ensemble | ||
sliding_param_rate_index != 0 && set_parameter!(pds,sliding_param_rate_index,0.0) | ||
|
||
#step system pds to reach attractor(non-drifting) | ||
#system starts to drift at t0=0.0 | ||
for _ in 0:Δt:Ttr | ||
step!(pds,Δt,true) | ||
end | ||
|
||
#rescale test states | ||
#add perturbation to test states | ||
for i in 1:N | ||
state_i = current_state(pds,i) | ||
perturbed_state_i = state_i .+ perturbation(ds,ϵ) | ||
#set_state!(pds.systems[N+i],perturbed_state_i) | ||
set_state!(pds,perturbed_state_i,N+i) | ||
end | ||
|
||
#set to drifting for initial ensemble | ||
set_parameters!(pds,initial_params) | ||
|
||
#set back time to t0 = 0 | ||
reinit!(pds,current_states(pds)) | ||
|
||
#calculate EAPD for each time step | ||
ensemble_averaged_pairwise_distance!(ρ,times,pds,T,Δt) | ||
return ρ,times | ||
|
||
end | ||
|
||
#calc distance for every time step until T | ||
function ensemble_averaged_pairwise_distance!(ρ,times,pds,T,Δt) | ||
for (i,t) in enumerate(0:Δt:T) | ||
ρ[i] = ensemble_averaged_pairwise_distance(pds) | ||
times[i] = current_time(pds) | ||
step!(pds,Δt,true) | ||
end | ||
end | ||
|
||
#calc distance for current states of pds | ||
function ensemble_averaged_pairwise_distance(pds) | ||
|
||
states = current_states(pds) | ||
N = Int(length(states)/2) | ||
|
||
#calculate distance averages | ||
ρ = 0.0 | ||
for i in 1:N | ||
ρ += log.(norm(states[i] - states[N+i])) | ||
end | ||
return ρ/N | ||
|
||
end | ||
|
||
function perturbation_uniform(ds,ϵ) | ||
D, T = dimension(ds), eltype(ds) | ||
p0 = randn(SVector{D, T}) | ||
p0 = ϵ * p0 / norm(p0) | ||
end |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
using ChaosTools, Test | ||
using LinearAlgebra | ||
|
||
henon_rule(x, p, n) = SVector{2}(1.0 - p[1]*x[1]^2 + x[2], p[2]*x[1]) | ||
henon() = DeterministicIteratedMap(henon_rule, zeros(2), [1.4, 0.3]) | ||
|
||
#test if ensemble averaging gives the same as | ||
#the usual lyapunov exponent for autonomous system | ||
@testset "time averaged and ensemble averaged lyapunov exponent" begin | ||
ds = henon() | ||
|
||
#eapd slope | ||
init_states = StateSpaceSet(0.2 .* rand(5000,2)) | ||
ρ,times = ensemble_averaged_pairwise_distance(ds,init_states,100;Ttr=1000,sliding_param_rate_index=0) | ||
lyap_instant = lyapunov_instant(ρ,times;interval=10:20) | ||
|
||
#lyapunov exponent | ||
λ = lyapunov(ds,1000;Ttr=1000) | ||
@test isapprox(lyap_instant,λ;atol=0.01) | ||
end | ||
|
||
#test sliding Duffing map | ||
#-------------------------duffing stuff----------------------- | ||
#https://doi.org/10.1016/j.physrep.2024.09.003 | ||
|
||
function duffing_drift(u0 = [0.1, 0.25]; ω = 1.0, β = 0.2, ε0 = 0.4, α=0.00045) | ||
return CoupledODEs(duffing_drift_rule, u0, [ω, β, ε0, α]) | ||
end | ||
|
||
@inbounds function duffing_drift_rule(x, p, t) | ||
ω, β, ε0, α = p | ||
dx1 = x[2] | ||
dx2 = (ε0+α*t)*cos(ω*t) + x[1] - x[1]^3 - 2β * x[2] | ||
return SVector(dx1, dx2) | ||
end | ||
|
||
@testset "Duffing map" begin | ||
#----------------------------------hamiltonian case-------------------------------------- | ||
duffing = duffing_drift(;β = 0.0,α=0.0,ε0=0.08) #no dissipation -> Hamiltonian case | ||
duffing_map = StroboscopicMap(duffing,2π) | ||
init_states_auto,_ = trajectory(duffing_map,5000,[-0.85,0.0];Ttr=0) #initial condition for a snapshot torus | ||
#set system to sliding | ||
set_parameter!(duffing_map,4,0.0005) | ||
|
||
ρ,times = ensemble_averaged_pairwise_distance(duffing_map,init_states_auto,100;Ttr=0,sliding_param_rate_index=4) | ||
lyap_instant = lyapunov_instant(ρ,times;interval=50:60) | ||
@test isapprox(lyap_instant,0.87;atol=0.01) #0.87 approximate value from article | ||
|
||
#-----------------------------------dissipative case------------------------------------ | ||
duffing = duffing_drift() #no dissipation -> Hamiltonian case | ||
duffing_map = StroboscopicMap(duffing,2π) | ||
init_states = randn(5000,2) | ||
ρ,times = ensemble_averaged_pairwise_distance(duffing_map,StateSpaceSet(init_states),100;Ttr=20,sliding_param_rate_index=4) | ||
lyap_instant = lyapunov_instant(ρ,times;interval=2:20) | ||
@test isapprox(lyap_instant,0.61;atol=0.01) #0.61 approximate value from article | ||
|
||
end |
Uh oh!
There was an error while loading. Please reload this page.