Skip to content

Commit

Permalink
Moved examples to separate repo, added new notebook for testing purpo…
Browse files Browse the repository at this point in the history
…ses.
  • Loading branch information
JanPalasek committed Jul 10, 2022
1 parent 2d87cb6 commit 15de24e
Show file tree
Hide file tree
Showing 6 changed files with 356 additions and 1,978 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ To unlock the full potential of Pretty Jupyter, see [the customization section](
## Documentation

- [Documentation for Pretty Jupyter](https://github.com/JanPalasek/pretty-jupyter/wiki).
- Examples on GitHub: Can be found in the directory `examples`.
- [Examples](https://github.com/JanPalasek/pretty-jupyter-examples).

## Dev Installation
```sh
Expand Down
1,099 changes: 0 additions & 1,099 deletions examples/demo.html

This file was deleted.

544 changes: 0 additions & 544 deletions examples/demo.ipynb

This file was deleted.

333 changes: 0 additions & 333 deletions tests/fixture/basic.ipynb

This file was deleted.

354 changes: 354 additions & 0 deletions tests/fixture/notebook.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,354 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%load_ext pretty_jupyter"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"\n",
"# Introduction\n",
"\n",
"The purpose of this notebook is only to test functionality of the Pretty Jupyter.\n",
"\n",
"# Chapter 1: Tabs\n",
"<span class='pretty-jupyter-token tabset tabset-pills' style='display: none;'></span>\n",
"\n",
"First we will test tabsets together with maths. We can clearly see that no math symbol is leaking.\n",
"\n",
"## Tab 1\n",
"\n",
"First tab.\n",
"\n",
"## Tab 2\n",
"\n",
"Second tab. This tab contains some math symbols, such as inline math: $a = 5$.\n",
"\n",
"Another symbol:\n",
"\n",
"$$a \\cdot a^2 = \\frac{a^5}{a^2} = a^3 = 125$$\n",
"\n",
"## Tab 3\n",
"\n",
"Tab 3."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%jinja markdown\n",
"\n",
"# Introduction\n",
"\n",
"The purpose of this notebook is only to test functionality of the Pretty Jupyter.\n",
"\n",
"# Chapter 1: Tabs\n",
"[//]: <> (-.- tabset tabset-pills)\n",
"\n",
"First we will test tabsets together with maths. We can clearly see that no math symbol is leaking.\n",
"\n",
"## Tab 1\n",
"\n",
"First tab.\n",
"\n",
"## Tab 2\n",
"\n",
"Second tab. This tab contains some math symbols, such as inline math: $a = 5$.\n",
"\n",
"Another symbol:\n",
"\n",
"$$a \\cdot a^2 = \\frac{a^5}{a^2} = a^3 = 125$$\n",
"\n",
"## Tab 3\n",
"\n",
"Tab 3."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"\n",
"# Chapter 2: Jinja Markdown\n",
"\n",
"Jinja Markdown is a great way how to combine variables together with Markdown."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%jinja markdown\n",
"\n",
"# Chapter 2: Jinja Markdown\n",
"\n",
"Jinja Markdown is a great way how to combine variables together with Markdown."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"data = pd.DataFrame({\n",
" \"A\": [1, 2, 3, 4],\n",
" \"B\": [\"One\", \"Two\", \"Three\", \"Four\"]\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"\n",
"Using Jinja Markdown, we can show the table as part of our markdown text:\n",
"\n",
"<details>\n",
"\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>A</th>\n",
" <th>B</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>One</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>Two</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>Three</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>Four</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"\n",
"</details>"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%jinja markdown\n",
"\n",
"Using Jinja Markdown, we can show the table as part of our markdown text:\n",
"\n",
"<details>\n",
"\n",
"{{ data.to_html() }}\n",
"\n",
"</details>"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"a = 10"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"\n",
"We can also combine variables and math symbols thanks to Jinja Markdown and create more complex expressions, such as the following:\n",
"\n",
"\n",
"<details>\n",
"\n",
"$$\n",
"\n",
"\\begin{align}\n",
"\n",
"a &= 10 \\\\\n",
"\\frac{a^{10}}{a^8} &= \\frac{ 10^{10} }{ 10^8 } \\\\\n",
"\\frac{ 10^{10} }{ 10^8 } &= 10^{2} \\\\\n",
"10^{2} &= 100 \\\\\n",
"\n",
"\\end{align}\n",
"$$\n",
"\n",
"</details>"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%jinja markdown\n",
"\n",
"We can also combine variables and math symbols thanks to Jinja Markdown and create more complex expressions, such as the following:\n",
"\n",
"\n",
"<details>\n",
"\n",
"$$\n",
"\n",
"\\begin{align}\n",
"\n",
"a &= {{a}} \\\\\n",
"\\frac{a^{10}}{a^8} &= \\frac{ {{a}}^{10} }{ {{a}}^8 } \\\\\n",
"\\frac{ {{a}}^{10} }{ {{a}}^8 } &= {{a}}^{2} \\\\\n",
"{{a}}^{2} &= {{ a ** 2 }} \\\\\n",
"\n",
"\\end{align}\n",
"$$\n",
"\n",
"</details>"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"sns.set_theme()\n",
"\n",
"import base64\n",
"from io import BytesIO\n",
"\n",
"IMG_FORMAT = r\"<img src='data:image/png;base64,{encoded}'>'\"\n",
"\n",
"tmpfile = BytesIO()\n",
"\n",
"fig, ax = plt.subplots()\n",
"sns.countplot(x=data[\"A\"], ax=ax).set(title=\"Example Figure\")\n",
"fig.savefig(tmpfile, format=\"png\")\n",
"plt.close()\n",
"\n",
"encoded = IMG_FORMAT.format(encoded=base64.b64encode(tmpfile.getvalue()).decode('utf-8'))"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"\n",
"We can even include matplotlib figures in-between our markdown, although this is a bit hardcore.\n",
"\n",
"**Watch this:**\n",
"\n",
"<img src=''>'"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%jinja markdown\n",
"\n",
"We can even include matplotlib figures in-between our markdown, although this is a bit hardcore.\n",
"\n",
"**Watch this:**\n",
"\n",
"{{ encoded }}\n",
"\n"
]
}
],
"metadata": {
"code_folding": "show",
"kernelspec": {
"display_name": "Python 3.9.13 ('venv': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "bcd7e97cf71e998a93ec80db15725ed4a4806c1de3630361ecb7124b538cb899"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
2 changes: 1 addition & 1 deletion tests/test_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

@pytest.fixture
def input_path():
return "tests/fixture/basic.ipynb"
return "tests/fixture/notebook.ipynb"


def test_nbconvert(input_path, tmpdir):
Expand Down

0 comments on commit 15de24e

Please sign in to comment.