Skip to content

Huy-Quang-Dao/DataDrivenControl-AI-RL-NZSG-Tracking

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

DataDrivenControl-AI-RL-NZSG-Tracking

Introduction

Here is my implementation of the model described in the paper Optimal tracking control for non-zero-sum games of linear discrete-time systems via off-policy reinforcement learning paper.

Experiments:

The corresponding feedback Nash equilibrium

$$K_1^* = \begin{bmatrix} -0.1616 & -0.1618 & -0.0555 & 0.1638 \end{bmatrix} ; K_2^* = \begin{bmatrix} -0.0855 & -0.0859 & 0.0073& 0.0896 \end{bmatrix}$$

Using the Off-Policy algorithm, I found the following control matrices

$$K_1^{\infty} = \begin{bmatrix} -0.161585 & -0.161827 & -0.0555294 & 0.163771 \end{bmatrix} ; K_2^{\infty} = \begin{bmatrix} -0.0854708 & -0.0858552 & 0.00733787 & 0.0896064 \end{bmatrix}$$

Comment

The probing noise will not affect the system and the Nash equilibrium solution learned without deviation with Off-Policy Algorithm.

Results

Results Off-Policy Algorithm

Convergence of the optimal control matrix (Off-Policy) Convergence of the optimal control matrix (Off-Policy)
drawing drawing

How to use my code

With my code, you can:

  • Model-Based by running ModelBased.m
  • Off-Policy Algorithm by running SolutionOffpolicyTracking.py

Docker

I will provide DockerFile soon.

Requirements

  • Matlab
  • python 3.11
  • numpy
  • matplotlib

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published