-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
234 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
import tensorflow as tf | ||
|
||
from core.features import FeatureMetas, Features | ||
from core.blocks import DNN, BiInteraction, SENet | ||
from core.utils import split_tensor | ||
|
||
|
||
def FiBiNet( | ||
feature_metas, | ||
interaction_mode='all', | ||
interaction_mode_se='all', | ||
embedding_initializer='glorot_uniform', | ||
embedding_regularizer=tf.keras.regularizers.l2(1e-5), | ||
fixed_embedding_dim=None, | ||
dnn_hidden_units=(128, 64, 1), | ||
dnn_activations=('relu', 'relu', None), | ||
dnn_use_bias=True, | ||
dnn_use_bn=False, | ||
dnn_dropout=0, | ||
dnn_kernel_initializers='glorot_uniform', | ||
dnn_bias_initializers='zeros', | ||
dnn_kernel_regularizers=tf.keras.regularizers.l2(1e-5), | ||
dnn_bias_regularizers=None, | ||
name='FiBiNet'): | ||
|
||
assert isinstance(feature_metas, FeatureMetas) | ||
|
||
with tf.name_scope(name): | ||
|
||
features = Features(metas=feature_metas) | ||
|
||
embedded_dict = features.get_embedded_dict( | ||
group_name='embedding', | ||
fixed_embedding_dim=fixed_embedding_dim, | ||
embedding_initializer=embedding_initializer, | ||
embedding_regularizer=embedding_regularizer, | ||
slots_filter=None | ||
) | ||
inputs = list(embedded_dict.values()) | ||
interactions = BiInteraction(mode=interaction_mode)(inputs) | ||
|
||
inputs_se = SENet(axis=-1)(tf.stack(inputs, axis=1)) | ||
interactions_se = BiInteraction(mode=interaction_mode_se)(split_tensor(inputs_se, axis=1)) | ||
|
||
dnn_inputs = tf.concat([interactions, interactions_se], axis=1) | ||
|
||
dnn_output = DNN( | ||
units=dnn_hidden_units, | ||
use_bias=dnn_use_bias, | ||
activations=dnn_activations, | ||
use_bn=dnn_use_bn, | ||
dropout=dnn_dropout, | ||
kernel_initializers=dnn_kernel_initializers, | ||
bias_initializers=dnn_bias_initializers, | ||
kernel_regularizers=dnn_kernel_regularizers, | ||
bias_regularizers=dnn_bias_regularizers | ||
)(dnn_inputs) | ||
|
||
# Output | ||
output = tf.keras.activations.sigmoid(dnn_output) | ||
|
||
model = tf.keras.Model(inputs=features.get_inputs_list(), outputs=output) | ||
|
||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
import tensorflow as tf | ||
|
||
from core.features import FeatureMetas, Features | ||
from core.blocks import DNN, BiInteraction | ||
from core.utils import group_embedded_by_dim | ||
|
||
|
||
def NFFM( | ||
feature_metas, | ||
biinteraction_mode='all', | ||
embedding_initializer='glorot_uniform', | ||
embedding_regularizer=tf.keras.regularizers.l2(1e-5), | ||
fm_fixed_embedding_dim=None, | ||
linear_use_bias=True, | ||
linear_kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-4, seed=1024), | ||
linear_kernel_regularizer=tf.keras.regularizers.l2(1e-5), | ||
dnn_hidden_units=(128, 64, 1), | ||
dnn_activations=('relu', 'relu', None), | ||
dnn_use_bias=True, | ||
dnn_use_bn=False, | ||
dnn_dropout=0, | ||
dnn_kernel_initializers='glorot_uniform', | ||
dnn_bias_initializers='zeros', | ||
dnn_kernel_regularizers=tf.keras.regularizers.l2(1e-5), | ||
dnn_bias_regularizers=None, | ||
name='NFFM'): | ||
|
||
assert isinstance(feature_metas, FeatureMetas) | ||
|
||
with tf.name_scope(name): | ||
|
||
features = Features(metas=feature_metas) | ||
|
||
# Linear Part | ||
with tf.name_scope('Linear'): | ||
linear_output = features.get_linear_logit(use_bias=linear_use_bias, | ||
kernel_initializer=linear_kernel_initializer, | ||
kernel_regularizer=linear_kernel_regularizer, | ||
embedding_group='dot_embedding', | ||
slots_filter=None) | ||
|
||
# Interaction Part | ||
with tf.name_scope('Interaction'): | ||
fm_embedded_dict = features.get_embedded_dict( | ||
group_name='embedding', | ||
fixed_embedding_dim=fm_fixed_embedding_dim, | ||
embedding_initializer=embedding_initializer, | ||
embedding_regularizer=embedding_regularizer, | ||
slots_filter=None | ||
) | ||
fm_dim_groups = group_embedded_by_dim(fm_embedded_dict) | ||
interactions = list() | ||
for fm_group in fm_dim_groups.values(): | ||
group_interaction = BiInteraction(mode=biinteraction_mode)(fm_group) | ||
interactions.append(group_interaction) | ||
|
||
interactions = tf.concat(interactions, axis=1) | ||
|
||
dnn_output = DNN( | ||
units=dnn_hidden_units, | ||
use_bias=dnn_use_bias, | ||
activations=dnn_activations, | ||
use_bn=dnn_use_bn, | ||
dropout=dnn_dropout, | ||
kernel_initializers=dnn_kernel_initializers, | ||
bias_initializers=dnn_bias_initializers, | ||
kernel_regularizers=dnn_kernel_regularizers, | ||
bias_regularizers=dnn_bias_regularizers | ||
)(interactions) | ||
|
||
# Output | ||
output = tf.add_n([linear_output, dnn_output]) | ||
output = tf.keras.activations.sigmoid(output) | ||
|
||
model = tf.keras.Model(inputs=features.get_inputs_list(), outputs=output) | ||
|
||
return model |