欢迎来到 BraTS 2021 3D 核磁共振成像分割项目!本项目侧重于利用深度学习技术从三维核磁共振扫描中分割脑肿瘤。目标是准确识别和分类不同的肿瘤区域,如增强肿瘤(ET)、肿瘤核心(TC)和整个肿瘤(WT)。
📦 src
├── 📄 BraTS.py # Dataset loading and preprocessing
├── 📄 inference.py # Inference and prediction logic
├── 📄 loss_function.py # Custom loss functions (Dice, Focal, CE)
├── 📄 main.py # Main script for training and inference
├── 📄 metrics.py # Metrics and evaluation utilities
├── 📄 train_and_val.py # Training and validation logic
├── 📄 train.py # Training loop and model management
- PyTorch: For deep learning model training and inference.
- Nibabel: For handling NIfTI files (MRI scans).
- Numpy: For numerical operations.
- Pandas: For data manipulation.
- TorchIO: For medical image augmentation and preprocessing.
To set up the environment, you can use the following commands:
# Using conda
conda env create -f environment.yml
conda activate cv
# Using pip
pip install -r requirements.txt