This repository contains the official implementation of our paper "SeqCSIST: Sequential Closely-Spaced Infrared Small Target Unmixing". Our work introduces:
- A novel task: CSIST Unmixing, which aims to detect [all targets in the form of sub-pixel localization from a highly dense CSIST group].
- A new dataset: SeqCSIST, specifically designed for [multi-frame CSIST Umixing].
- An End-to-End Framework: Our approach outperforms existing methods by [].
- Number of samples: [100,000 frames organized into 5,000 random trajectories]
- Download: []
Our model consists of three main modules:
- [Sparsity-driven Feature Extraction module]: []
- [Positional Encoding module]: []
- [Temporal Deformable Feature Alignment (TDFA) module]: []
To set up the environment, run:
conda env create -f environment.yml
conda activate speed
mim install mmcv==2.0.1
To train the model, run:
CUDA_VISIBLE_DEVICES=0,1,2,3 tools/dist_train.sh configs/configs/DeRefNet.py 4
To evaluate on the test set, run:
Our method achieves state-of-the-art performance on SeqCSIST Task
Method | Params | FLOPs | CSO-mAP | AP₀₅ | AP₁₀ | AP₁₅ | AP₂₀ | AP₂₅ |
---|---|---|---|---|---|---|---|---|
Traditional Optimization | ||||||||
ISTA | - | 398.57 M | 10.72 | 0.14 | 1.97 | 8.74 | 18.22 | 24.53 |
BID | - | 10.89 M | 14.40 | 0.00 | 3.00 | 13.00 | 26.00 | 30.00 |
Image Super-Resolution | ||||||||
SRCNN | 15.84 K | 0.35 G | 49.64 | 1.40 | 16.30 | 51.20 | 85.00 | 94.30 |
GMFN | 2.80 M | 27.53 G | 50.94 | 0.70 | 11.90 | 51.20 | 92.10 | 98.80 |
DBPN | 1.96 M | 4.75 G | 50.40 | 0.80 | 12.50 | 51.20 | 90.00 | 97.40 |
SRGAN | 35.31 M | 40.274 G | 26.96 | 0.30 | 3.90 | 19.40 | 46.90 | 64.30 |
BSRGAN | 36.06 M | 0.266 T | 33.21 | 0.40 | 6.10 | 27.50 | 57.20 | 74.90 |
ESRGAN | 50.45 M | 0.375 T | 36.86 | 0.40 | 6.00 | 30.30 | 66.80 | 80.70 |
RDN | 22.31 M | 53.97 G | 49.61 | 0.70 | 10.60 | 48.20 | 90.40 | 98.20 |
EDSR | 0.39 M | 0.99 G | 50.19 | 0.60 | 10.30 | 48.80 | 92.20 | 99.00 |
ESPCN | 54.75 M | 22.73 K | 47.18 | 1.60 | 15.30 | 46.60 | 80.30 | 92.00 |
TDAN | 0.59 M | 2.179 G | 47.96 | 0.50 | 8.60 | 43.80 | 89.30 | 97.50 |
Deep Unfolding | ||||||||
LIHT | 21.10 M | 0.42 G | 6.36 | 0.10 | 1.00 | 4.30 | 10.40 | 16.00 |
LAMP | 2.13 M | 86.97 G | 9.09 | 0.10 | 1.50 | 6.50 | 15.00 | 22.30 |
ISTA-Net | 0.17 M | 4.09 G | 48.95 | 0.70 | 11.20 | 49.70 | 87.70 | 95.40 |
FISTA-Net | 74.60 K | 6.02 G | 50.61 | 1.00 | 12.60 | 51.40 | 90.70 | 97.30 |
ISTA-Net+ | 0.38 M | 7.70 G | 51.02 | 1.00 | 13.70 | 52.70 | 90.40 | 93.70 |
ISTA-Net++ | 0.76 M | 16.54 G | 50.50 | 0.70 | 10.40 | 49.20 | 92.8 | 99.40 |
LISTA | 21.10 M | 0.42 G | 9.39 | 0.10 | 1.70 | 6.90 | 15.40 | 22.70 |
USRNet | 1.07 M | 11.26 G | 49.25 | 0.70 | 9.80 | 46.60 | 91.20 | 98.90 |
TiLISTA | 2.22 M | 86.97 M | 13.52 | 0.20 | 2.10 | 9.50 | 22.60 | 33.30 |
RPCANet | 0.68 M | 14.81 G | 47.17 | 0.70 | 10.20 | 44.50 | 84.60 | 95.90 |
DeRefNet (Ours) | 0.89 M | 15.70 G | 51.55 | 1.00 | 14.40 | 54.90 | 90.40 | 97.10 |
If you find this work useful, please cite our paper:
@article{zhai2025seqcsist,
title={SeqCSIST: Sequential Closely-Spaced Infrared Small Target Unmixing},
author={Ximeng Zhai, Bohan Xu, Yaohong Chen, Hao Wang, Kehua Guo, Yimian Dai},
journal={ArXiv/IEEE Transactions on Geoscience and Remote Sensing},
year={2025}
}