Skip to content

GrokCV/SeqCSIST

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SeqCSIST: Sequential Closely-Spaced Infrared Small Target Unmixing

📘 Introduction

This repository contains the official implementation of our paper "SeqCSIST: Sequential Closely-Spaced Infrared Small Target Unmixing". Our work introduces:

  • A novel task: CSIST Unmixing, which aims to detect [all targets in the form of sub-pixel localization from a highly dense CSIST group].
  • A new dataset: SeqCSIST, specifically designed for [multi-frame CSIST Umixing].
  • An End-to-End Framework: Our approach outperforms existing methods by [].

🗂 Dataset

  • Number of samples: [100,000 frames organized into 5,000 random trajectories]
  • Download: []

🔧 Model

Our model consists of three main modules:

  • [Sparsity-driven Feature Extraction module]: []
  • [Positional Encoding module]: []
  • [Temporal Deformable Feature Alignment (TDFA) module]: []

🏗 Architecture

Model Architecture

⚙ Installation

To set up the environment, run:

conda env create -f environment.yml
conda activate speed
mim install mmcv==2.0.1

🚀 Training

To train the model, run:

CUDA_VISIBLE_DEVICES=0,1,2,3 tools/dist_train.sh configs/configs/DeRefNet.py 4

🎯 Evaluation

To evaluate on the test set, run:

🏆 Results

Our method achieves state-of-the-art performance on SeqCSIST Task

📊 Comparison with state-of-the-art methods


Method Params FLOPs CSO-mAP AP₀₅ AP₁₀ AP₁₅ AP₂₀ AP₂₅
Traditional Optimization
ISTA - 398.57 M 10.72 0.14 1.97 8.74 18.22 24.53
BID - 10.89 M 14.40 0.00 3.00 13.00 26.00 30.00
Image Super-Resolution
SRCNN 15.84 K 0.35 G 49.64 1.40 16.30 51.20 85.00 94.30
GMFN 2.80 M 27.53 G 50.94 0.70 11.90 51.20 92.10 98.80
DBPN 1.96 M 4.75 G 50.40 0.80 12.50 51.20 90.00 97.40
SRGAN 35.31 M 40.274 G 26.96 0.30 3.90 19.40 46.90 64.30
BSRGAN 36.06 M 0.266 T 33.21 0.40 6.10 27.50 57.20 74.90
ESRGAN 50.45 M 0.375 T 36.86 0.40 6.00 30.30 66.80 80.70
RDN 22.31 M 53.97 G 49.61 0.70 10.60 48.20 90.40 98.20
EDSR 0.39 M 0.99 G 50.19 0.60 10.30 48.80 92.20 99.00
ESPCN 54.75 M 22.73 K 47.18 1.60 15.30 46.60 80.30 92.00
TDAN 0.59 M 2.179 G 47.96 0.50 8.60 43.80 89.30 97.50
Deep Unfolding
LIHT 21.10 M 0.42 G 6.36 0.10 1.00 4.30 10.40 16.00
LAMP 2.13 M 86.97 G 9.09 0.10 1.50 6.50 15.00 22.30
ISTA-Net 0.17 M 4.09 G 48.95 0.70 11.20 49.70 87.70 95.40
FISTA-Net 74.60 K 6.02 G 50.61 1.00 12.60 51.40 90.70 97.30
ISTA-Net+ 0.38 M 7.70 G 51.02 1.00 13.70 52.70 90.40 93.70
ISTA-Net++ 0.76 M 16.54 G 50.50 0.70 10.40 49.20 92.8 99.40
LISTA 21.10 M 0.42 G 9.39 0.10 1.70 6.90 15.40 22.70
USRNet 1.07 M 11.26 G 49.25 0.70 9.80 46.60 91.20 98.90
TiLISTA 2.22 M 86.97 M 13.52 0.20 2.10 9.50 22.60 33.30
RPCANet 0.68 M 14.81 G 47.17 0.70 10.20 44.50 84.60 95.90
DeRefNet (Ours) 0.89 M 15.70 G 51.55 1.00 14.40 54.90 90.40 97.10

🎥 Visualization

🔍 Citation

If you find this work useful, please cite our paper:

@article{zhai2025seqcsist,
  title={SeqCSIST: Sequential Closely-Spaced Infrared Small Target Unmixing},
  author={Ximeng Zhai, Bohan Xu, Yaohong Chen, Hao Wang, Kehua Guo, Yimian Dai},
  journal={ArXiv/IEEE Transactions on Geoscience and Remote Sensing},
  year={2025}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •