Releases: GKalliatakis/Human-Rights-Archive-CNNs
Releases · GKalliatakis/Human-Rights-Archive-CNNs
single TensorFlow .pb files
Freeze and convert trained Keras models into a single TensorFlow pb file.
Bottleneck features
Saved bottleneck features of various pre-trained networks
Data of Human Rights Archive
There are 3050 train images from 8 human rights violations categories and one 'no violation' category in the HRA, which are used to train the Human-Rights-Archive-CNNs.
The validation set can automatically be set in Keras by setting validation_split argument in model.fit accordingly. There are 30 images per category in the testing set.
CompoundNet feature extraction weights files
Add feature extraction mode weights for CompoundNet
batch_size = 25
feature_extraction_epochs = 10
class_weight = {0: 5.08, 1: 1, 2: 10.86, 3: 5.08, 4: 3.46, 5: 2.31, 6: 4.70, 7: 6.17, 8: 1.55}
Fine-tuning weights files
Add fine-tuning mode weights for VGG16, VGG16-Places365 and ResNet50.
batch_size = 25
fine_tune_epochs = 20
class_weight = {0: 5.08, 1: 1, 2: 10.86, 3: 5.08, 4: 3.46, 5: 2.31, 6: 4.70, 7: 6.17, 8: 1.55}
Feature extraction weights files
Add feature extraction mode weights for VGG16, VGG16-Places365 and ResNet50.
batch_size = 25
feature_extraction_epochs = 10
class_weight = {0: 5.08, 1: 1, 2: 10.86, 3: 5.08, 4: 3.46, 5: 2.31, 6: 4.70, 7: 6.17, 8: 1.55}
Baseline model weights files
Add weights files for the baseline (trained from scratch) HRA-CNN model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 224, 224, 32) 896
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 32) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 32) 9248
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 32) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 64) 18496
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 64) 0
_________________________________________________________________
flatten (Flatten) (None, 50176) 0
_________________________________________________________________
fc1 (Dense) (None, 64) 3211328
_________________________________________________________________
dropout_1 (Dropout) (None, 64) 0
_________________________________________________________________
predictions (Dense) (None, 9) 585
=================================================================
Total params: 3,240,553
Trainable params: 3,240,553
Non-trainable params: 0
_________________________________________________________________