Skip to content

Feature/virtual nodes #26

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 146 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
146 commits
Select commit Hold shift + click to select a range
fbf36fc
Add ALIGNN work to separate branch
sidnb13 Dec 19, 2022
2168d2d
Fix transform bugs
sidnb13 Dec 30, 2022
85e20e4
Add in pre-training transform functionality
sidnb13 Dec 30, 2022
718c77c
Implement load from checkpoint
sidnb13 Jan 1, 2023
5e6d045
Remove aux files and testing folder
sidnb13 Jan 9, 2023
d9dfbc4
Initiate virtual nodes project
sidnb13 Jan 10, 2023
e41e709
Implement preliminary virtual node functionality
sidnb13 Jan 10, 2023
fea59d7
Update graphite config
sidnb13 Jan 11, 2023
bbe469a
Add basic metric plotting
sidnb13 Jan 11, 2023
2776b01
Modify CGCNN for virtual nodes
sidnb13 Jan 12, 2023
28689ef
Fix json_wrap bug for virtual nodes
sidnb13 Jan 13, 2023
e8c4d3d
Address issues from PR #12
sidnb13 Jan 15, 2023
0fcb993
Address issues from PR #12
sidnb13 Jan 15, 2023
bae8ef1
Fix from_config bug
sidnb13 Jan 18, 2023
d5cf8bd
Fix merge conflicts
sidnb13 Jan 18, 2023
51e1674
Add wandb capability
sidnb13 Jan 18, 2023
d26dc31
WIP: 28689ef Fix json_wrap bug for virtual nodes
sidnb13 Jan 18, 2023
a019a3f
Add ase import to processor
sidnb13 Jan 18, 2023
a63a637
Wandb capability
sidnb13 Jan 18, 2023
ed76bb5
Fix trainer argument bug
sidnb13 Jan 18, 2023
59a05bd
Fix bug, wandb config not seen
Jan 19, 2023
7693418
Fix issues from #12
sidnb13 Jan 19, 2023
4810e8b
Remove extra parameters and fix bugs #12
sidnb13 Jan 20, 2023
63f2835
Refactor transforms and target_index
sidnb13 Jan 20, 2023
60c53b8
Fix GetY dimensionality bug
sidnb13 Jan 20, 2023
30dcaf1
Merge branch 'feature/alignn-model' into virtual-nodes
sidnb13 Jan 20, 2023
cbc8496
Fix trainer and config files
sidnb13 Jan 20, 2023
c14671d
Extract virtual nodes to transform, add FC hidden layers for atomic p…
sidnb13 Jan 21, 2023
4839111
Virtual nodes into transform abstraction
sidnb13 Jan 22, 2023
be6a576
Remove unnecessary code
sidnb13 Jan 22, 2023
a2fcc54
Add custom data object
sidnb13 Jan 25, 2023
459d9d2
Fix VirtualNodeGraph data object bug
sidnb13 Jan 26, 2023
4edbaa7
Add wandb model & config save
sidnb13 Jan 30, 2023
10846c7
Integrate MP pattern functionality
sidnb13 Feb 4, 2023
d6f1f73
Optimize transforms for unused attributes, add old model for comparison
sidnb13 Feb 6, 2023
83a7071
WIP fixing processing bug
sidnb13 Feb 7, 2023
c11ff1b
Fix bug
sidnb13 Feb 8, 2023
c5cbb6e
Save Phoenix-slurm work
Feb 10, 2023
5e8a5b8
Implement workaround for VN bug
Feb 10, 2023
606b9b7
Revamp virtual node transform
sidnb13 Feb 14, 2023
524bb05
Programmatic edge creation
sidnb13 Feb 18, 2023
56ab3fc
Add interaction-specific cutoff options
sidnb13 Feb 19, 2023
cda8928
Fix config to reflect updated transforms
sidnb13 Feb 19, 2023
f4c7790
Finish VN transform for custom cutoffs
sidnb13 Feb 19, 2023
83d43ee
Add in sweep capability (need to test)
sidnb13 Feb 19, 2023
7de254d
Add sweeps
sidnb13 Feb 20, 2023
46cda3e
Incorporate test_loss
sidnb13 Feb 24, 2023
0f428a9
Merge all-neighbor functionality
sidnb13 Feb 24, 2023
ec5f6e9
Add profiling to preprocessor and make helpers independent of data
sidnb13 Feb 25, 2023
d580ebb
Work on all_neighbors
sidnb13 Feb 28, 2023
e9e79fb
Add option to select preprocess edge creation routine
sidnb13 Mar 3, 2023
24030b8
Fix edge_vec shape bug
sidnb13 Mar 4, 2023
b3f870a
Add process time measures, disable OCP neighbor masking, minor format…
sidnb13 Mar 6, 2023
f3c0b95
Unify source of processing truth for transforms
sidnb13 Mar 7, 2023
2435aaa
modify GPU config
sidnb13 Mar 10, 2023
d09e37c
Port over TorchMD-net, start Gemnet port
sidnb13 Mar 13, 2023
748d945
Add W&B resume support (untested)
sidnb13 Mar 13, 2023
1a535c1
Fix bug in processor, left default vn increment
sidnb13 Mar 21, 2023
339d60b
Feature: W&B resuming, local resuming
sidnb13 Mar 27, 2023
ceade3f
Heterogeneous MP, option to skip pre-transform processing
sidnb13 Mar 29, 2023
a4fd64e
streamline/declutter W&B logging, fix pooling
sidnb13 Apr 1, 2023
a3fdff4
Add feature to manage processed datasets, fix meshgrid warning
sidnb13 Apr 2, 2023
f7aa982
Show available memory not allocated
sidnb13 Apr 2, 2023
ab02249
Fix bugs with the processing save mechanism
sidnb13 Apr 2, 2023
3445605
Fix cuda available memory log
sidnb13 Apr 3, 2023
24699f9
Log prediction error for runs
sidnb13 Apr 4, 2023
10031fe
Add parity plots
sidnb13 Apr 4, 2023
2e415b3
Refine sweep capability
sidnb13 Apr 5, 2023
76b7785
work on sweep integration (still broken pipe)
sidnb13 Apr 6, 2023
e5b2699
fix processor bug
sidnb13 Apr 6, 2023
a9396b0
update configs
sidnb13 Apr 7, 2023
938f556
fix test dir structure
Apr 7, 2023
0387bfd
update config
Apr 7, 2023
63ff76b
Fix sweeps bug
sidnb13 Apr 8, 2023
ddd87fa
update config
Apr 9, 2023
6fd6348
update config
Apr 9, 2023
e468110
Fix bug with sweep config reader
sidnb13 Apr 10, 2023
e173e18
config
Apr 10, 2023
02cba9a
Merge branch 'feature/virtual-nodes' of https://github.com/Fung-Lab/M…
Apr 10, 2023
2a8318b
Fix config artifact to use implicit path
Apr 14, 2023
debb130
Add metadata hash to W&B for grouping
sidnb13 Apr 21, 2023
1287b43
Feature: parallel sweep agents
sidnb13 Apr 22, 2023
2811d21
Mostly fixed parallel sweeps
sidnb13 Apr 22, 2023
a40e0e5
Revert to ase-based virtual node creation
sidnb13 Apr 23, 2023
449ff59
add force preprocess option
Apr 23, 2023
bd47b24
Merge branch 'feature/virtual-nodes' of https://github.com/Fung-Lab/M…
Apr 23, 2023
40317d4
Fix small bug with wandb CLI usage, update configs
Apr 25, 2023
fbbde81
Slight transform optimize, correct VN method is now used
sidnb13 Apr 26, 2023
3119d1d
WIP batch process transform ability
sidnb13 May 3, 2023
5491f92
add cross-platform env file
sidnb13 May 3, 2023
4841ebc
Add MPS support to device choice logic
sidnb13 May 4, 2023
50bd651
Fix batching data attribute bug, MPS backend
sidnb13 May 4, 2023
8d25fa7
Fix batching
sidnb13 May 5, 2023
2cb19bc
Minor fixes
sidnb13 May 5, 2023
518fdb1
Remove deprecated call
sidnb13 May 8, 2023
a664bb1
Fix edge indexing for individual graph reconstruction
sidnb13 May 8, 2023
6352658
bugfix
sidnb13 May 9, 2023
5285eac
Add option to use small datasets for debugging
sidnb13 May 9, 2023
280b5c7
Fix incorrect feature sizes in CGCNN_VN
sidnb13 May 9, 2023
7632c36
remove unused routine class
sidnb13 May 10, 2023
1eeedfa
hotfix
sidnb13 May 11, 2023
75f4140
fix transform batch check
May 12, 2023
0e72075
add VN process option, ignore local configs
sidnb13 May 12, 2023
9b759af
Updater configs
May 13, 2023
864af80
Option for VN generation method
May 13, 2023
491a0a0
Add fallthrough out of memory handler
May 14, 2023
93b5012
Add preprocessing task
May 14, 2023
e03fde0
Abstraction for jobs and runs
May 14, 2023
124e27b
Finish config management feature
sidnb13 May 15, 2023
9097846
fix job script generation, add some template files
May 15, 2023
917c347
Bugfix job script management feature
sidnb13 May 15, 2023
7369ae0
Discard mp_pattern, streamline to be same as attrs
sidnb13 May 16, 2023
b3bd193
Update config templates
sidnb13 May 16, 2023
905dd3a
streamline configs
May 16, 2023
2f9294e
update config templates
sidnb13 May 22, 2023
345b807
minor fix
sidnb13 May 22, 2023
aab158e
Merge branch 'main' into feature/virtual-nodes
sidnb13 May 22, 2023
c4806c9
Fix data, datasets files
sidnb13 May 22, 2023
966e709
Initial attention based implementation for virtual nodes
sidnb13 May 23, 2023
166cd51
Minor fixes
May 23, 2023
b252bc7
Fix small bugs
sidnb13 May 23, 2023
c11dcfd
Add hetero-attention architecture, config save with override params
sidnb13 May 24, 2023
7358736
available memory in GB
sidnb13 May 24, 2023
218be82
Add path printed when logging metadata search
sidnb13 May 24, 2023
b4ed50c
Minor formatting fix
sidnb13 May 24, 2023
dc82db2
Recentralize HAN models, implement weighted RV pooling with attention
sidnb13 May 24, 2023
c25d458
Merge branch 'main' into feature/virtual-nodes
sidnb13 May 31, 2023
d3adb30
Remove unused files
sidnb13 May 31, 2023
f5b04c1
Fix minor bugs, GetY now
sidnb13 Jun 1, 2023
ee8d2c5
Formatting
sidnb13 Jun 1, 2023
6bb780b
SAGpool with node class identity encoding
sidnb13 Jun 8, 2023
c9dc1c5
Fix bugs related to config and remove checkpoint_path option
sidnb13 Jun 8, 2023
7bcfdb0
Add parallel option to trainer, resolve rank ambiguity
sidnb13 Jun 9, 2023
913533d
Add parallel option to trainer, resolve rank ambiguity
sidnb13 Jun 9, 2023
a9c9bb4
Merge branch 'feature/virtual-nodes' of https://github.com/Fung-Lab/M…
sidnb13 Jun 9, 2023
1b78200
Merge branch 'feature/virtual-nodes' of https://github.com/Fung-Lab/M…
sidnb13 Jun 9, 2023
ce86782
Merge branch 'feature/virtual-nodes' of https://github.com/Fung-Lab/M…
sidnb13 Jun 9, 2023
9bfee65
Pass correct edge feature attribute in cgcnn_vn
sidnb13 Jun 9, 2023
5e651db
Fix bugs with saving processed data
sidnb13 Jun 10, 2023
08c111e
Fix flags
sidnb13 Jun 10, 2023
4532cb2
replace gcnconv with cgconv
Jun 10, 2023
855a0ad
fix pool
sidnb13 Jun 10, 2023
3baae28
rename `CustomData` to `VirtualNodeData`
sidnb13 Jun 11, 2023
3f0e049
Allow backward compatibility with DDP
sidnb13 Jun 14, 2023
2f095f8
Fix backward compat with DDP
Jun 14, 2023
610f465
fix bugs
sidnb13 Jun 14, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ __pycache__/
*.py[cod]
*$py.class
core.python.*
core.python.*

# C extensions
*.so
Expand Down Expand Up @@ -179,8 +180,14 @@ test*.ipynb

checkpoints/

# local configs
configs/examples/cgcnn_vn/
configs/examples/cgcnn_vn_hg/
configs/generated

# misc
.flake8
.pylintrc
**/wandb/
*.out
results/
9 changes: 9 additions & 0 deletions .vscode/settings.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
{
"python.analysis.typeCheckingMode": "off",
"python.linting.flake8Enabled": true,
"python.linting.enabled": true,
"[python]": {
"editor.defaultFormatter": "ms-python.black-formatter"
},
"python.formatting.provider": "none"
}
18 changes: 13 additions & 5 deletions configs/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,23 +4,27 @@ task:
run_mode: "train"
identifier: "my_train_job"
parallel: False
# seed=0 means random initalization
use_wandb: True
wandb_entity: "fung-lab"
wandb_project: "cgcnn_vn"

seed: 12345678
# Defaults to run directory if not specified
save_dir:
continue_job: False
load_training_state: False
# Path to the checkpoint file
checkpoint_path:
checkpoint_dir:
write_output: True

model:
name: CGCNN
save_model: True
model_path: "my_model.pth"
model_path: "cgcnn.pth"
edge_steps: 50
self_loop: True
# model attributes
# model attributes
dim1: 100
dim2: 150
pre_fc_count: 1
Expand All @@ -35,14 +39,17 @@ model:

optim:
max_epochs: 40
max_epochs: 250
max_checkpoint_epochs: 0
max_checkpoint_epochs: 0
lr: 0.002
# Either custom or from torch.nn.functional library. If from torch, loss_type is TorchLossWrapper
# Either custom or from torch.nn.functional library. If from torch, loss_type is TorchLossWrapper
loss:
loss_type: "TorchLossWrapper"
loss_args: {"loss_fn": "l1_loss"}

batch_size: 100
batch_size: 64
optimizer:
optimizer_type: "AdamW"
optimizer_args: {}
Expand Down Expand Up @@ -82,8 +89,9 @@ dataset:
node_representation: "onehot"
additional_attributes: []
# Print out processing info
# Print out processing info
verbose: True
# Index of target column in targets.csv
use_virtual_nodes: False
# graph specific settings
preprocess_params:
cutoff_radius : 8.0
Expand Down
140 changes: 140 additions & 0 deletions configs/config_templates/cgcnn_2dnpj.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
trainer: property

task:
# run_mode: train
identifier: "cgcnn_vn_2dnpj"
reprocess: False
run_id: ""
parallel: True
device: "cuda:0"
seed: 0
# seed=0 means random initalization
write_output: True
parallel: True
# Training print out frequency (print per n number of epochs)
verbosity: 1
wandb:
use_wandb: True
wandb_entity: "fung-lab"
wandb_project: "cgcnn_vn_new"
notes: "try 2d dataset"
tags: ["test"]
track_params:
- "model.hyperparams.mp_pattern"
- "model.hyperparams.pool"
- "model.hyperparams.virtual_pool"
- "model.hyperparams.gc_count"
- "optim.lr"
- "optim.batch_size"
- "optim.max_epochs"
- "dataset.preprocess_params.num_offsets"
- "dataset.preprocess_params.edge_calc_method"
- "dataset.preprocess_params.all_neighbors"
- "dataset.preprocess_params.edge_steps"
- "dataset.preprocess_params.use_degree"
log_artifacts:
- "/global/cfs/projectdirs/m3641/Sidharth/MatDeepLearn_dev/matdeeplearn/models/cgcnn_vn.py"
metadata:
architecture: "CGCNN_VN"
cluster: "fung-cluster"
dataset: "2DNPJ_data"
sweep:
parallel: True
do_sweep: False # ignore rest of config if False
system: "phoenix_slurm" # one of "local", "phoenix_slurm"
job_config: "/nethome/sbaskaran31/projects/Sidharth/MatDeepLearn_dev/configs/jobs/phoenix_slurm.yml"
count: 3
sweep_file: "/nethome/sbaskaran31/projects/Sidharth/MatDeepLearn_dev/configs/sweeps/cgcnn_vn_sweep_d1.yml"

model:
name: CGCNN_VN
load_model: False
save_model: True
model_path: "cgcnn_vn.pth"
# model hyperparams
hyperparams:
edge_steps: 25
self_loop: True
dim1: 100
dim2: 150
atomic_intermediate_layer_resolution: 0
pre_fc_count: 1
gc_count: 4
post_fc_count: 3
pool: "global_mean_pool" # pooling reduction scheme
virtual_pool: "AtomicNumberPooling" # pooling method
pool_choice: "virtual" # whether to use virtual or real nodes or both in RealVirtualPooling
mp_pattern: ["rr", "rv"]
pool_order: "early"
batch_norm: True
batch_track_stats: True
act_fn: "relu"
act_nn: "ReLU"
dropout_rate: 0.0

optim:
max_epochs: 250
lr: 0.002
loss:
loss_type: "TorchLossWrapper"
loss_args: {"loss_fn": "l1_loss"}
batch_size: 64
optimizer:
optimizer_type: "AdamW"
optimizer_args: {}
scheduler:
scheduler_type: "ReduceLROnPlateau"
scheduler_args: {"mode":"min", "factor":0.8, "patience":10, "min_lr":0.00001, "threshold":0.0002}

dataset:
processed: False # if False, need to preprocessor data and generate .pt file
force_preprocess: False
num_examples: 0 # set to 0 when using full dataset, else will take the first "num_examples" examples
# Path to data files
# src: "/storage/home/hcoda1/9/sbaskaran31/p-vfung3-0/2D_data_npj/raw"
src: "/global/cfs/projectdirs/m3641/Sidharth/datasets/2D_data_npj/raw"
# target_path: "/storage/home/hcoda1/9/sbaskaran31/p-vfung3-0/2D_data_npj/targets.csv"
target_path: "/global/cfs/projectdirs/m3641/Sidharth/datasets/2D_data_npj/targets.csv"
# pt_path: "/storage/home/hcoda1/9/sbaskaran31/p-vfung3-0/2D_data_npj/processed/ocp"
pt_path: "/global/cfs/projectdirs/m3641/Sidharth/datasets/2D_data_npj/processed/ocp"
# transforms
transforms:
- name: GetY
args:
index: 0
otf: False
- name: VirtualNodeGeneration
args:
virtual_box_increment: 3
otf: False
- name: VirtualEdgeGeneration
args:
attrs: ["rr", "rv"]
rr_cutoff: 12.0
rv_cutoff: 12.0
otf: False
batch: True
# use for passing into global config
# one of MDL, ASE, OCP
use_sweep_params: False
apply_pre_transform_processing: False
# use again for passing into global config
data_format: "json"
node_representation: "onehot"
additional_attributes: []
# Print out processing info
verbose: True
# graph specific settings: preprocessing hyperparams
preprocess_params:
cutoff_radius : 5.0
n_neighbors : 250
process_batch_size : 100
edge_calc_method: "ocp"
num_offsets: 1
edge_steps : 25
all_neighbors: True
use_degree: False
# Ratios for train/val/test split out of a total of 1
train_ratio: 0.8
val_ratio: 0.05
test_ratio: 0.15
152 changes: 152 additions & 0 deletions configs/config_templates/cgcnn_han_hmof_5k.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
trainer: property

task:
# run_mode: train
identifier: "cgcnn_han_vn_post_hmof"
reprocess: False
run_id: ""
parallel: True
device: "cuda:0"
seed: 0
# seed=0 means random initalization
write_output: True
parallel: True
# Training print out frequency (print per n number of epochs)
verbosity: 1
wandb:
use_wandb: True
wandb_entity: "fung-lab"
wandb_project: "cgcnn_vn_new"
notes: ""
tags: ["test"]
track_params:
- "model.hyperparams.mp_pattern"
- "model.hyperparams.pool"
- "model.hyperparams.virtual_pool"
- "model.hyperparams.gc_count"
- "model.hyperparams.attn_heads"
- "optim.lr"
- "optim.batch_size"
- "optim.max_epochs"
- "dataset.preprocess_params.num_offsets"
- "dataset.preprocess_params.edge_calc_method"
- "dataset.preprocess_params.all_neighbors"
- "dataset.preprocess_params.edge_steps"
- "dataset.preprocess_params.use_degree"
log_artifacts:
# - "/nethome/sbaskaran31/projects/Sidharth/MatDeepLearn_dev/matdeeplearn/models/cgcnn_vn.py"
# - "/storage/home/hcoda1/9/sbaskaran31/p-vfung3-0/MatDeepLearn_dev/matdeeplearn/models/cgcnn_vn.py"
- "/global/cfs/projectdirs/m3641/Sidharth/MatDeepLearn_dev/matdeeplearn/models/cgcnn_vn.py"
metadata:
architecture: "CGCNN_VN"
cluster: "fung-cluster"
dataset: "hMOF-5K"
sweep:
parallel: True
do_sweep: False # ignore rest of config if False
system: "phoenix_slurm" # one of "local", "phoenix_slurm"
job_config: "/nethome/sbaskaran31/projects/Sidharth/MatDeepLearn_dev/configs/jobs/phoenix_slurm.yml"
count: 3
sweep_file: "/nethome/sbaskaran31/projects/Sidharth/MatDeepLearn_dev/configs/sweeps/cgcnn_vn_sweep_d1.yml"
# sweep_file: "/nethome/sbaskaran31/projects/Sidharth/MatDeepLearn_dev/configs/cgcnn_vn_sweep.yml"

model:
name: CGCNN_HAN_VN
load_model: False
save_model: True
model_path: "cgcnn_han_vn.pth"
# model hyperparams
hyperparams:
edge_steps: 25
self_loop: True
dim1: 100
dim2: 150
atomic_intermediate_layer_resolution: 0
pre_fc_count: 1
gc_count: 4
post_fc_count: 3
attn_heads: 6
pool: "global_mean_pool" # pooling reduction scheme
virtual_pool:
virtual_pool_name: "RealVirtualAttention" # pooling method
args:
embed_dim: 100
attn_size: 128
mp_pattern: ["rr", "rv"]
pool_order: "early"
batch_norm: True
batch_track_stats: True
act_fn: "relu"
act_nn: "ReLU"
dropout_rate: 0.0

optim:
max_epochs: 250
lr: 0.002
loss:
loss_type: "TorchLossWrapper"
loss_args: {"loss_fn": "l1_loss"}
batch_size: 64
optimizer:
optimizer_type: "AdamW"
optimizer_args: {}
scheduler:
scheduler_type: "ReduceLROnPlateau"
scheduler_args: {"mode":"min", "factor":0.8, "patience":10, "min_lr":0.00001, "threshold":0.0002}

dataset:
processed: False # if False, need to preprocessor data and generate .pt file
force_preprocess: False
num_examples: 0 # set to 0 when using full dataset, else will take the first "num_examples" examples
# Path to data files
# src: "/nethome/sbaskaran31/projects/Sidharth/hMOF/raw_5k/data.json"
# src: "/storage/home/hcoda1/9/sbaskaran31/p-vfung3-0/hMOF/raw_5k/raw_5k/data.json"
src: "/global/cfs/projectdirs/m3641/Shared/Materials_datasets/hMOF/raw_5k/data.json"
target_path: ""
# pt_path: "/nethome/sbaskaran31/projects/Sidharth/hMOF/raw_5k/ocp"
# pt_path: "/storage/home/hcoda1/9/sbaskaran31/p-vfung3-0/hMOF/raw_5k/raw_5k/ocp"
pt_path: "/global/cfs/projectdirs/m3641/Shared/Materials_datasets/hMOF/raw_5k/ocp"
# transforms
transforms:
- name: GetY
args:
index: 5 # methane adsorption uptake
otf: False
- name: VirtualNodeGeneration
args:
virtual_box_increment: 3
method: "ase"
otf: False
- name: VirtualEdgeGeneration
args:
attrs: ["rr", "rv"]
rr_cutoff: 12
rv_cutoff: 12
vr_cutoff: 5.0
vv_cutoff: 5.0
otf: False
batch: True
# use for passing into global config
# one of MDL, ASE, OCP
use_sweep_params: False
apply_pre_transform_processing: False
# use again for passing into global config
data_format: "json"
node_representation: "onehot"
additional_attributes: []
# Print out processing info
verbose: True
# graph specific settings: preprocessing hyperparams
preprocess_params:
cutoff_radius : 5.0
n_neighbors : 250
process_batch_size : 50
edge_calc_method: "ocp"
num_offsets: 1
edge_steps : 25
all_neighbors: True
use_degree: False
# Ratios for train/val/test split out of a total of 1
train_ratio: 0.8
val_ratio: 0.05
test_ratio: 0.15
Loading