crossfire
is a package created to give easier access to Fogo Cruzado's datasets, which is a digital collaborative platform of gun shooting occurrences in the metropolitan areas of Rio de Janeiro and Recife.
The package facilitates data extraction from Fogo Cruzado's open API.
- Python 3.9 or newer
$ pip install crossfire
If you want to have access to the data as Pandas DataFrame
s:
$ pip install crossfire[df]
If you want to have access to the data as GeoPandas GeoDataFrame
s:
$ pip install crossfire[geodf]
To have access to the API data, registration is required.
The email
and password
used in the registration can be configured as FOGOCRUZADO_EMAIL
and FOGOCRUZADO_PASSWORD
environment variables in a .env
file:
FOGOCRUZADO_EMAIL=[email protected]
FOGOCRUZADO_PASSWORD=YOUR_PASSWORD
If you prefer not to use these environment variables, you can still use the credentials when instantiating a client.
Get all states with at least one city covered by the Fogo Cruzado project:
from crossfire import states
states()
It is possible to get results in DataFrae
:
states(format='df')
Get cities from a specific state covered by the Fogo Cruzado project.
from crossfire import cities
cities()
It is possible to get results in DataFrae
:
cities(format='df')
Name | Required | Description | Type | Default value | Example |
---|---|---|---|---|---|
state_id |
❌ | ID of the state | string | None |
'b112ffbe-17b3-4ad0-8f2a-2038745d1d14' |
city_id |
❌ | ID of the city | string | None |
'88959ad9-b2f5-4a33-a8ec-ceff5a572ca5' |
city_name |
❌ | Name of the city | string | None |
'Rio de Janeiro' |
format |
❌ | Format of the result | string | 'dict' |
'dict' , 'df' or 'geodf' |
To get shooting occurrences from Fogo Cruzado dataset it is necessary to specify a state id in id_state
parameter:
from crossfire import occurrences
occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef')
It is possible to get results in DataFrae
:
occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef', format='df')
Or as GeoDataFrame
:
occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef', format='geodf')
Name | Required | Description | Type | Default value | Example |
---|---|---|---|---|---|
id_state |
✅ | ID of the state | string | None |
'b112ffbe-17b3-4ad0-8f2a-2038745d1d14' |
id_cities |
❌ | ID of the city | string or list of strings | None |
'88959ad9-b2f5-4a33-a8ec-ceff5a572ca5' or ['88959ad9-b2f5-4a33-a8ec-ceff5a572ca5', '9d7b569c-ec84-4908-96ab-3706ec3bfc57'] |
type_occurrence |
❌ | Type of occurrence | string | 'all' |
'all' , 'withVictim' or 'withoutVictim' |
initial_date |
❌ | Initial date of the occurrences | string, date or datetime |
None |
'2020-01-01' , '2020/01/01' , '20200101' , datetime.datetime(2023, 1, 1) or datetime.date(2023, 1, 1) |
final_date |
❌ | Final date of the occurrences | string, date or datetime |
None |
'2020-01-01' , '2020/01/01' , '20200101' , datetime.datetime(2023, 1, 1) or datetime.date(2023, 1, 1) |
max_parallel_requests |
❌ | Maximum number of parallel requests to the API | int | 16 |
32 |
format |
❌ | Format of the result | string | 'dict' |
'dict' , 'df' or 'geodf' |
flat |
❌ | Return nested columns as separate columns | bool | False |
True or False |
Occurrence data often contains nested information in several columns. By setting the parameter flat=True
, you can simplify the analysis by separating nested data into individual columns. This feature is particularly useful for columns such as contextInfo
, state
, region
, city
, neighborhood
, and locality
.
For example, to access detailed information about the context of occurrences, such as identifying the main reason, you would typically need to access the contextInfo
column and then look for the mainReason key. With the flat=True
parameter, this nested information is automatically split into separate columns, making the data easier to work with.
When flat=True
is set, the function returns occurrences with the flattened columns. Each new column retains the original column name as a prefix and the nested key as a suffix. For instance, the contextInfo
column will be split into the following columns: contextInfo_mainReason
, contextInfo_complementaryReasons
, contextInfo_clippings
, contextInfo_massacre
, and contextInfo_policeUnit
.
from crossfire import occurrences
from crossfire.clients.occurrences import flatten
occs = occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef')
occs[0].keys()
# dict_keys(['id', 'documentNumber', 'address', 'state', 'region', 'city', 'neighborhood', 'subNeighborhood', 'locality', 'latitude', 'longitude', 'date', 'policeAction', 'agentPresence', 'relatedRecord', 'contextInfo', 'transports', 'victims', 'animalVictims'])
flattened_occs = occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef', flat=True)
occs[0].keys()
# dict_keys(['id', 'documentNumber', 'address', 'state', 'region', 'city', 'neighborhood', 'subNeighborhood', 'locality', 'latitude', 'longitude', 'date', 'policeAction', 'agentPresence', 'relatedRecord', 'transports', 'victims', 'animalVictims', 'contextInfo', 'contextInfo_mainReason', 'contextInfo_complementaryReasons', 'contextInfo_clippings', 'contextInfo_massacre', 'contextInfo_policeUnit'])
By using the flat=True parameter
, you ensure that all nested data is expanded into individual columns, simplifying data analysis and making it more straightforward to access specific details within your occurrence data.
If not using the environment variables for authentication, it is recommended to use a custom client:
from crossfire import Client
client = Client(email="[email protected]", password="Rio&Pernambuco") # credentials are optional, the default are the environment variables
client.states()
client.cities()
client.occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef')
from crossfire import AsyncClient
client = AsyncClient() # credentials are optional, the default are the environment variables
await client.states()
await client.cities()
await client.occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef')
@FelipeSBarros is the creator of the Python package. This implementation was funded by CYTED project number 520RT0010 redGeoLIBERO
.