Skip to content

FelipeSBarros/crossfire

 
 

Repository files navigation

hexagon crossfire

crossfire Python client

crossfire is a package created to give easier access to Fogo Cruzado's datasets, which is a digital collaborative platform of gun shooting occurrences in the metropolitan areas of Rio de Janeiro and Recife.

The package facilitates data extraction from Fogo Cruzado's open API.

Requirements

  • Python 3.9 or newer

Install

$ pip install crossfire

If you want to have access to the data as Pandas DataFrames:

$ pip install crossfire[df]

If you want to have access to the data as GeoPandas GeoDataFrames:

$ pip install crossfire[geodf]

Authentication

To have access to the API data, registration is required.

The email and password used in the registration can be configured as FOGOCRUZADO_EMAIL and FOGOCRUZADO_PASSWORD environment variables in a .env file:

FOGOCRUZADO_EMAIL=[email protected]
FOGOCRUZADO_PASSWORD=YOUR_PASSWORD

If you prefer not to use these environment variables, you can still use the credentials when instantiating a client.

Usage

List of states covered by the project

Get all states with at least one city covered by the Fogo Cruzado project:

from crossfire import states


states()

It is possible to get results in DataFrae:

states(format='df')

List of cities covered by the project

Get cities from a specific state covered by the Fogo Cruzado project.

from crossfire import cities


cities()

It is possible to get results in DataFrae:

cities(format='df')

Cities parameters

Name Required Description Type Default value Example
state_id ID of the state string None 'b112ffbe-17b3-4ad0-8f2a-2038745d1d14'
city_id ID of the city string None '88959ad9-b2f5-4a33-a8ec-ceff5a572ca5'
city_name Name of the city string None 'Rio de Janeiro'
format Format of the result string 'dict' 'dict', 'df' or 'geodf'

Listing occurrences

To get shooting occurrences from Fogo Cruzado dataset it is necessary to specify a state id in id_state parameter:

from crossfire import occurrences


occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef')

It is possible to get results in DataFrae:

occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef', format='df')

Or as GeoDataFrame:

occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef', format='geodf')

Occurrences parameters

Name Required Description Type Default value Example
id_state ID of the state string None 'b112ffbe-17b3-4ad0-8f2a-2038745d1d14'
id_cities ID of the city string or list of strings None '88959ad9-b2f5-4a33-a8ec-ceff5a572ca5' or ['88959ad9-b2f5-4a33-a8ec-ceff5a572ca5', '9d7b569c-ec84-4908-96ab-3706ec3bfc57']
type_occurrence Type of occurrence string 'all' 'all', 'withVictim' or 'withoutVictim'
initial_date Initial date of the occurrences string, date or datetime None '2020-01-01', '2020/01/01', '20200101', datetime.datetime(2023, 1, 1) or datetime.date(2023, 1, 1)
final_date Final date of the occurrences string, date or datetime None '2020-01-01', '2020/01/01', '20200101', datetime.datetime(2023, 1, 1) or datetime.date(2023, 1, 1)
max_parallel_requests Maximum number of parallel requests to the API int 16 32
format Format of the result string 'dict' 'dict', 'df' or 'geodf'
flat Return nested columns as separate columns bool False True or False
About flat parameter

Occurrence data often contains nested information in several columns. By setting the parameter flat=True, you can simplify the analysis by separating nested data into individual columns. This feature is particularly useful for columns such as contextInfo, state, region, city, neighborhood, and locality.

For example, to access detailed information about the context of occurrences, such as identifying the main reason, you would typically need to access the contextInfo column and then look for the mainReason key. With the flat=True parameter, this nested information is automatically split into separate columns, making the data easier to work with.

When flat=True is set, the function returns occurrences with the flattened columns. Each new column retains the original column name as a prefix and the nested key as a suffix. For instance, the contextInfo column will be split into the following columns: contextInfo_mainReason, contextInfo_complementaryReasons, contextInfo_clippings, contextInfo_massacre, and contextInfo_policeUnit.

Example
from crossfire import occurrences
from crossfire.clients.occurrences import flatten

occs = occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef')
occs[0].keys()
# dict_keys(['id', 'documentNumber', 'address', 'state', 'region', 'city', 'neighborhood', 'subNeighborhood', 'locality', 'latitude', 'longitude', 'date', 'policeAction', 'agentPresence', 'relatedRecord', 'contextInfo', 'transports', 'victims', 'animalVictims'])
flattened_occs = occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef', flat=True)
occs[0].keys()
# dict_keys(['id', 'documentNumber', 'address', 'state', 'region', 'city', 'neighborhood', 'subNeighborhood', 'locality', 'latitude', 'longitude', 'date', 'policeAction', 'agentPresence', 'relatedRecord', 'transports', 'victims', 'animalVictims', 'contextInfo', 'contextInfo_mainReason', 'contextInfo_complementaryReasons', 'contextInfo_clippings', 'contextInfo_massacre', 'contextInfo_policeUnit'])

By using the flat=True parameter, you ensure that all nested data is expanded into individual columns, simplifying data analysis and making it more straightforward to access specific details within your occurrence data.

Custom client

If not using the environment variables for authentication, it is recommended to use a custom client:

from crossfire import Client


client = Client(email="[email protected]", password="Rio&Pernambuco") # credentials are optional, the default are the environment variables
client.states()
client.cities()
client.occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef')

Asynchronous use with asyncio

from crossfire import AsyncClient


client = AsyncClient()  # credentials are optional, the default are the environment variables
await client.states()
await client.cities()
await client.occurrences('813ca36b-91e3-4a18-b408-60b27a1942ef')

Credits

@FelipeSBarros is the creator of the Python package. This implementation was funded by CYTED project number 520RT0010 redGeoLIBERO.

Contributors