This project involves the use of a multi-sensor system for 3D SLAM (Simultaneous Localization and Mapping) using Agilex Scout Mini in a Gazebo simulation environment. The goal is to create a point cloud map of the environment using various sensors and compare the results based on quality metrics.
-
3D LiDAR:
- 360° horizontal and 30° vertical Field of View (FOV)
- 0.5° horizontal and vertical resolution
- 50m range
- 10Hz refresh rate
-
RGBD Camera:
- 120° FOV
- 5m depth range
- 30Hz frame rate
- Use the Office Earthquake Gazebo world for simulation.
- Create a Point Cloud Map of the environment using an algorithm such as Octomap (octomap ROS Wiki).
- Perform SLAM using the following configurations:
- a) Only RGBD camera-based SLAM
- b) Only 3D LiDAR-based SLAM
- c) Both 3D LiDAR and RGBD camera-based SLAM
- Compare the quality of the generated 3D maps using metrics like:
- Point cloud density
- Peak Signal-to-Noise Ratio (PSNR)
- Structural Similarity Index (SSIM)
roslaunch scout_gazebo_sim scout_earthquake.launch
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
rosrun octomap_server octomap_server_node cloud_in:=/rgbd/depth/points _frame_id:=odom _debug:=true
rosrun octomap_server octomap_server_node cloud_in:=/lidar/points _frame_id:=odom _debug:=true
rosrun pcl_ros pointcloud_to_pcd input:=/octomap_point_cloud_centers _prefix:="output"
pcl_viewer filename.pcd