hb-base proposes the structure of a deep learning project. Using TensorFlow's higher api a basic structure is provided. If you start a deep learning project from this project, All you need to do is implement the core.
- There are many boilerplate codes when creating a new deep learning project.
- Recommend using higher APIs (Estimator, Experiment, Dataset and tf.metrics)
- You can focus the core (model's graph).
- The training or evaluate results are automatically applied to the TensorBoard.
- When terminated learning, you can receive a notificatio with a Slack.
- Python 3.6
- TensorFlow 1.4
- hb-config (Singleton Config)
- requests
- Slack Incoming Webhook URL
.
├── config/ # Config files (.yml, .json) using with hb-config
├── data/ # dataset path
├── notebooks/ # Prototyping with numpy or tf.interactivesession
├── scripts/ # download dataset using shell scripts
├── concrete_model/ # concrete model architecture graphs (from input to logits)
├── __init__.py # Graph logic
├── ... # Implements the components or modules
├── data_loader.py # data_reader, preprocessing, make_batch
├── hook.py # training or test hook feature (eg. print_variables, handle training config)
├── main.py # define experiment_fn (enable tfdbg)
├── model.py # define EstimatorSpec
└── utils.py # slack notification (incoming-webhook)
Reference : hb-config, Dataset, experiments_fn, EstimatorSpec, tfdbg
Directories below contain dummy data.
- config/
- data/
- notebooks/
- scripts/
evaluate
: Evaluate on the evaluation data.extend_train_hooks
: Extends the hooks for training.reset_export_strategies
: Resets the export strategies with the new_export_strategies.run_std_server
: Starts a TensorFlow server and joins the serving thread.test
: Tests training, evaluating and exporting the estimator for a single step.train
: Fit the estimator using the training data.train_and_evaluate
: Interleaves training and evaluation.
Download as zip then implements concrete model's graph, data_loader and customizing others.
After implements.. Install requirements.
pip install -r requirements.txt
Then, Download dataset and pre-processing.
sh scripts/download_dataset.sh
python data_loader.py --config check-tiny
Finally, start train and evaluate model
python main.py --config check-tiny --mode train_and_evaluate
tensorboard --logdir logs
Maintainer
Dongjun Lee ([email protected])