Papers related to machine learning, deep learning, and reinforcement learning.
A good way to track the paper reading may be through google docs?
- LLMs/FMs: Google doc [Lastly updated: 10/06/2024]
- Computer Vision: Google doc [Lastly updated: 10/20/2024]
- (Multi-agent) Reinforcement Learning: Google doc [Lastly updated: 10/06/2024]
- Autonomous Driving: Google doc [Lastly updated: 10/06/2024]
- Smart Agriculture: Google doc [Lastly updated: 10/13/2024]
- Robotics: Google doc [Lastly updated: 10/18/2024]
- Power Systems: Google doc [Lastly updated: 10/06/2024]
- Time-series Models: Google doc [Lastly updated: 10/06/2024]
- Good Tutorials: Google doc
- General Research Ideas: Google doc [Lastly updated: 10/06/2024]
- Li, Yuecheng, Hongwen He, Amir Khajepour, Yong Chen, Weiwei Huo, and Hao Wang. "Deep reinforcement learning for intelligent energy management systems of hybrid-electric powertrains: Recent advances, open issues, and prospects." IEEE Transactions on Transportation Electrification (2024).
- Shi, Zhonghao, Ellen Landrum, Amy O. Connell, Mina Kian, Leticia Pinto-Alva, Kaleen Shrestha, Xiaoyuan Zhu, and Maja J. Matarić. "How Can Large Language Models Enable Better Socially Assistive Human-Robot Interaction: A Brief Survey." arXiv preprint arXiv:2404.00938 (2024).
- Zhuang, Weiming, Chen Chen, and Lingjuan Lyu. "When foundation model meets federated learning: Motivations, challenges, and future directions." arXiv preprint arXiv:2306.15546 (2023).
- Li, Xinran, and Jun Zhang. "Context-aware Communication for Multi-agent Reinforcement Learning." arXiv preprint arXiv:2312.15600 (2023).
- Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "Simcse: Simple contrastive learning of sentence embeddings." arXiv preprint arXiv:2104.08821 (2021).
- Guan, Cong, et al. "Efficient Multi-agent Communication via Self-supervised Information Aggregation." Advances in Neural Information Processing Systems 35 (2022): 1020-1033.
- Yuan, William, et al. "Transformer in Reinforcement Learning for Decision-Making: A Survey." (2023).
- He, Sihong, et al. "Data-driven distributionally robust electric vehicle balancing for autonomous mobility-on-demand systems under demand and supply uncertainties." IEEE Transactions on Intelligent Transportation Systems (2023).
- Chafii, Marwa, et al. "Emergent Communication in Multi-Agent Reinforcement Learning for Future Wireless Networks." arXiv preprint arXiv:2309.06021 (2023).
- Faghri, Fartash, et al. "Reinforce Data, Multiply Impact: Improved Model Accuracy and Robustness with Dataset Reinforcement." arXiv preprint arXiv:2303.08983 (2023).
- Wang, Letian, et al. "Efficient Reinforcement Learning for Autonomous Driving with Parameterized Skills and Priors." arXiv preprint arXiv:2305.04412 (2023).
- Jiang, Qingsong, et al. "Deep-reinforcement-learning-based water diversion strategy." Environmental Science and Ecotechnology (2023): 100298.
- Prudencio, Rafael Figueiredo, Marcos ROA Maximo, and Esther Luna Colombini. "A survey on offline reinforcement learning: Taxonomy, review, and open problems." IEEE Transactions on Neural Networks and Learning Systems (2023).
- Chen, Wubing. "Learning Multi-intersection Traffic Signal Control via Coevolutionary Multi-Agent Reinforcement Learning." (2023).
- Chen, Xianda, et al. "FollowNet: A Comprehensive Benchmark for Car-Following Behavior Modeling." arXiv preprint arXiv:2306.05381 (2023).
- Yadavalli, Sushma Reddy, Lokesh Chandra Das, and Myounggyu Won. "RLPG: Reinforcement Learning Approach for Dynamic Intra-Platoon Gap Adaptation for Highway On-Ramp Merging." arXiv preprint arXiv:2212.03497 (2022).
- Shi, Zhonghao, Ellen Landrum, Amy O. Connell, Mina Kian, Leticia Pinto-Alva, Kaleen Shrestha, Xiaoyuan Zhu, and Maja J. Matarić. "How Can Large Language Models Enable Better Socially Assistive Human-Robot Interaction: A Brief Survey." arXiv preprint arXiv:2404.00938 (2024).
- [HER] Andrychowicz, Marcin, et al. "Hindsight experience replay." Advances in neural information processing systems 30 (2017).
- Yang, Zhihan, and Hai Nguyen. "Recurrent off-policy baselines for memory-based continuous control." arXiv preprint arXiv:2110.12628 (2021).
- [DRQN]: Hausknecht, Matthew, and Peter Stone. "Deep recurrent q-learning for partially observable mdps." arXiv preprint arXiv:1507.06527 (2015).
- [Esemble] Lan, Qingfeng, et al. "Maxmin q-learning: Controlling the estimation bias of q-learning." arXiv preprint arXiv:2002.06487 (2020).
- [Esemble] Chen, Xinyue, et al. "Randomized ensembled double q-learning: Learning fast without a model." arXiv preprint arXiv:2101.05982 (2021).
- [Esemble] Hiraoka, Takuya, et al. "Dropout Q-Functions for Doubly Efficient Reinforcement Learning." arXiv preprint arXiv:2110.02034 (2021).
- Xu, Mengda, Manuela Veloso, and Shuran Song. "ASPiRe: Adaptive Skill Priors for Reinforcement Learning." arXiv preprint arXiv:2209.15205 (2022).
- (Auxiliary tasks) Jaderberg, Max, et al. "Reinforcement learning with unsupervised auxiliary tasks." arXiv preprint arXiv:1611.05397 (2016).
-
[Survey]: Prudencio, Rafael Figueiredo, Marcos ROA Maximo, and Esther Luna Colombini. "A survey on offline reinforcement learning: Taxonomy, review, and open problems." IEEE Transactions on Neural Networks and Learning Systems (2023).
-
[Survey]: Levine, Sergey, et al. "Offline reinforcement learning: Tutorial, review, and perspectives on open problems." arXiv preprint arXiv:2005.01643 (2020).
-
(BCQ): Fujimoto, Scott, David Meger, and Doina Precup. "Off-policy deep reinforcement learning without exploration." International Conference on Machine Learning. PMLR, 2019.
-
(BEAR) Kumar, Aviral, et al. "Stabilizing off-policy q-learning via bootstrapping error reduction." arXiv preprint arXiv:1906.00949 (2019).
-
Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling." arXiv preprint arXiv:2106.01345 (2021).
-
Janner, Michael, Qiyang Li, and Sergey Levine. "Reinforcement Learning as One Big Sequence Modeling Problem." arXiv preprint arXiv:2106.02039 (2021).
-
Fujimoto, Scott, and Shixiang Shane Gu. "A Minimalist Approach to Offline Reinforcement Learning." arXiv preprint arXiv:2106.06860 (2021).
-
Mandlekar, Ajay, et al. "Iris: Implicit reinforcement without interaction at scale for learning control from offline robot manipulation data." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020
Offline-to-Online
- Nair, Ashvin, et al. "AWAC: Accelerating Online Reinforcement Learning with Offline Datasets." (2020).
- Lee, Seunghyun, et al. "Offline-to-Online Reinforcement Learning via Balanced Replay and Pessimistic Q-Ensemble." arXiv preprint arXiv:2107.00591 (2021).
- Kurutach, Thanard, et al. "Model-ensemble trust-region policy optimization." arXiv preprint arXiv:1802.10592 (2018).
- Matsushima, Tatsuya, et al. "Deployment-efficient reinforcement learning via model-based offline optimization." arXiv preprint arXiv:2006.03647 (2020).
- Zhang, Marvin, et al. "Solar: Deep structured representations for model-based reinforcement learning." International Conference on Machine Learning. PMLR, 2019.
- Kaiser, Lukasz, et al. "Model-based reinforcement learning for atari." arXiv preprint arXiv:1903.00374 (2019).
Uncertainty Estimate
- Yu, Tianhe, et al. "Mopo: Model-based offline policy optimization." arXiv preprint arXiv:2005.13239 (2020).
- (LOMPO) Rafailov, Rafael, et al. "Offline reinforcement learning from images with latent space models." Learning for Dynamics and Control. PMLR, 2021.
- Wang, Letian, et al. "Efficient Reinforcement Learning for Autonomous Driving with Parameterized Skills and Priors." arXiv preprint arXiv:2305.04412 (2023).
- Chen, Dian, et al. "Learning by cheating." Conference on Robot Learning. PMLR, 2020.
- Lynch, Corey, et al. "Learning latent plans from play." Conference on Robot Learning. PMLR, 2020.
- (BCQ) Torabi, Faraz, Garrett Warnell, and Peter Stone. "Behavioral cloning from observation." arXiv preprint arXiv:1805.01954 (2018).
- (ILPO) Edwards, Ashley, et al. "Imitating latent policies from observation." International Conference on Machine Learning. PMLR, 2019.
- Park, Jongjin, et al. "SURF: Semi-supervised Reward Learning with Data Augmentation for Feedback-efficient Preference-based Reinforcement Learning." arXiv preprint arXiv:2203.10050 (2022).
- Finn, Chelsea, et al. "Generalizing skills with semi-supervised reinforcement learning." arXiv preprint arXiv:1612.00429 (2016).
- Nachum, Ofir, et al. "Data-efficient hierarchical reinforcement learning." arXiv preprint arXiv:1805.08296 (2018).
- Ng, Andrew Y., Daishi Harada, and Stuart Russell. "Policy invariance under reward transformations: Theory and application to reward shaping." Icml. Vol. 99. 1999.
- (FORM) Jaegle, Andrew, et al. "Imitation by Predicting Observations." International Conference on Machine Learning. PMLR, 2021.
- Christiano, Paul F., et al. "Deep reinforcement learning from human preferences." Advances in neural information processing systems 30 (2017).
- Cang, Catherine, et al. "Behavioral Priors and Dynamics Models: Improving Performance and Domain Transfer in Offline RL." arXiv preprint arXiv:2106.09119 (2021).
- Wang, Zhendong, Jonathan J. Hunt, and Mingyuan Zhou. "Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning." arXiv preprint arXiv:2208.06193 (2022).
- Janner, Michael, et al. "Planning with Diffusion for Flexible Behavior Synthesis." arXiv preprint arXiv:2205.09991 (2022).
- Di Palo, Norman, et al. "Towards A Unified Agent with Foundation Models." Workshop on Reincarnating Reinforcement Learning at ICLR 2023. 2023.
- Li, Boyan, et al. "Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action representation." arXiv preprint arXiv:2109.05490 (2021).
- Neunert, Michael, et al. "Continuous-discrete reinforcement learning for hybrid control in robotics." Conference on Robot Learning. PMLR, 2020.
- Mao, Hangyu, et al. "Transformer in Transformer as Backbone for Deep Reinforcement Learning." arXiv preprint arXiv:2212.14538 (2022).
- [Survey] Beltrán, Enrique Tomás Martínez, et al. "Decentralized Federated Learning: Fundamentals, State-of-the-art, Frameworks, Trends, and Challenges." arXiv preprint arXiv:2211.08413 (2022).
- [Survey] Qi, Jiaju, et al. "Federated reinforcement learning: Techniques, applications, and open challenges." arXiv preprint arXiv:2108.11887 (2021).
- Achiam, Joshua, et al. "Constrained policy optimization." International conference on machine learning. PMLR, 2017.
- Amos, Brandon, et al. "Differentiable mpc for end-to-end planning and control." Advances in neural information processing systems 31 (2018).
-
- Chen, Xianda, et al. "FollowNet: A Comprehensive Benchmark for Car-Following Behavior Modeling." arXiv preprint arXiv:2306.05381 (2023).
- Yadavalli, Sushma Reddy, Lokesh Chandra Das, and Myounggyu Won. "RLPG: Reinforcement Learning Approach for Dynamic Intra-Platoon Gap Adaptation for Highway On-Ramp Merging." arXiv preprint arXiv:2212.03497 (2022).
- Cao, Zhong, et al. "Continuous improvement of self-driving cars using dynamic confidence-aware reinforcement learning." Nature Machine Intelligence 5.2 (2023): 145-158.
- Huang, Wenhui, et al. "Goal-guided Transformer-enabled Reinforcement Learning for Efficient Autonomous Navigation." arXiv preprint arXiv:2301.00362 (2023).
- Liu, Haochen, et al. "Augmenting Reinforcement Learning with Transformer-based Scene Representation Learning for Decision-making of Autonomous Driving." arXiv preprint arXiv:2208.12263 (2022).
- Mavrogiannis, Angelos, Rohan Chandra, and Dinesh Manocha. "B-GAP: Behavior-Guided Action Prediction for Autonomous Navigation." arXiv preprint arXiv:2011.03748 (2020).
- Zha, Daochen, et al. "DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning." arXiv preprint arXiv:2106.06135 (2021).
- Haarnoja, Tuomas, et al. "Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning." arXiv preprint arXiv:2304.13653 (2023).
- Evans, Benjamin, et al. "Accelerating Online Reinforcement Learning via Supervisory Safety Systems." arXiv preprint arXiv:2209.11082 (2022).
- Lee, Joonho, et al. "Learning quadrupedal locomotion over challenging terrain." Science robotics 5.47 (2020): eabc5986.
- Jiang, Qingsong, et al. "Deep-reinforcement-learning-based water diversion strategy." Environmental Science and Ecotechnology (2023): 100298.
- Ma, Hailan, et al. "Curriculum-based deep reinforcement learning for quantum control." IEEE Transactions on Neural Networks and Learning Systems (2022).
- Joshi, Bhaskar, Dhruv Kapur, and Harikumar Kandath. "Sim-to-Real Deep Reinforcement Learning based Obstacle Avoidance for UAVs under Measurement Uncertainty." arXiv preprint arXiv:2303.07243 (2023).
- Yuan, William, et al. "Transformer in Reinforcement Learning for Decision-Making: A Survey." (2023).
- Da Silva, Felipe Leno, and Anna Helena Reali Costa. "A survey on transfer learning for multiagent reinforcement learning systems." Journal of Artificial Intelligence Research 64 (2019): 645-703.
- Wong, Annie, et al. "Multiagent Deep Reinforcement Learning: Challenges and Directions Towards Human-Like Approaches." arXiv preprint arXiv:2106.15691 (2021).
- Guan, Cong, et al. "Efficient Multi-agent Communication via Self-supervised Information Aggregation." Advances in Neural Information Processing Systems 35 (2022): 1020-1033.
- VDN (2017): Sunehag, Peter, et al. "Value-decomposition networks for cooperative multi-agent learning." arXiv preprint arXiv:1706.05296 (2017).
- QMIX (2018): Rashid, Tabish, et al. "QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning." arXiv preprint arXiv:1803.11485 (2018).
- DIAL (2016): Foerster, Jakob, et al. "Learning to communicate with deep multi-agent reinforcement learning." Advances in neural information processing systems. 2016.
- CommNet (2016): Sukhbaatar, Sainbayar, and Rob Fergus. "Learning multiagent communication with backpropagation." Advances in neural information processing systems. 2016.
- IAC (2021): Ma, Xiaoteng, et al. "Modeling the Interaction between Agents in Cooperative Multi-Agent Reinforcement Learning." arXiv preprint arXiv:2102.06042 (2021).
- Wen, Muning, et al. "Multi-Agent Reinforcement Learning is a Sequence Modeling Problem." arXiv preprint arXiv:2205.14953 (2022).
- Yu, Chao, et al. "The surprising effectiveness of ppo in cooperative, multi-agent games." arXiv preprint arXiv:2103.01955 (2021).
- Kuba, Jakub Grudzien, et al. "Trust region policy optimisation in multi-agent reinforcement learning." arXiv preprint arXiv:2109.11251 (2021).
- Kuba, Jakub Grudzien, et al. "Settling the variance of multi-agent policy gradients." Advances in Neural Information Processing Systems 34 (2021): 13458-13470.
- ConsensusNet (2018): Zhang, Kaiqing, et al. "Fully decentralized multi-agent reinforcement learning with networked agents." arXiv preprint arXiv:1802.08757 (2018).
- MAAC: Iqbal, Shariq, and Fei Sha. "Actor-attention-critic for multi-agent reinforcement learning." International Conference on Machine Learning. PMLR, 2019.
- NeurComm: Chu, Tianshu, Sandeep Chinchali, and Sachin Katti. "Multi-agent Reinforcement Learning for Networked System Control." arXiv preprint arXiv:2004.01339 (2020).
- Li, Xinran, and Jun Zhang. "Context-aware Communication for Multi-agent Reinforcement Learning." arXiv preprint arXiv:2312.15600 (2023).
- Chafii, Marwa, et al. "Emergent Communication in Multi-Agent Reinforcement Learning for Future Wireless Networks." arXiv preprint arXiv:2309.06021 (2023).
- Zhu, Changxi, Mehdi Dastani, and Shihan Wang. "A survey of multi-agent reinforcement learning with communication." arXiv preprint arXiv:2203.08975 (2022).
- [MASIA] Guan, Cong, et al. "Efficient Multi-agent Communication via Self-supervised Information Aggregation." Advances in Neural Information Processing Systems 35 (2022): 1020-1033.
- Kim, Woojun, Jongeui Park, and Youngchul Sung. "Communication in multi-agent reinforcement learning: Intention sharing." International Conference on Learning Representations. 2021.
- [NeurComm] Chu, Tianshu, Sandeep Chinchali, and Sachin Katti. "Multi-agent reinforcement learning for networked system control." arXiv preprint arXiv:2004.01339 (2020).
- [IC3Net] Singh, Amanpreet, Tushar Jain, and Sainbayar Sukhbaatar. "Learning when to communicate at scale in multiagent cooperative and competitive tasks." arXiv preprint arXiv:1812.09755 (2018).
- [COMA] Foerster, Jakob, et al. "Counterfactual multi-agent policy gradients." Proceedings of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018.
- [NMARL] Zhang, Kaiqing, et al. "Fully decentralized multi-agent reinforcement learning with networked agents." International Conference on Machine Learning. PMLR, 2018.
- [DIAL] Foerster, Jakob, et al. "Learning to communicate with deep multi-agent reinforcement learning." Advances in neural information processing systems 29 (2016).
- [CommNet] Sukhbaatar, Sainbayar, and Rob Fergus. "Learning multiagent communication with backpropagation." Advances in neural information processing systems 29 (2016).
- Gupta, Jayesh K., Maxim Egorov, and Mykel Kochenderfer. "Cooperative multi-agent control using deep reinforcement learning." International Conference on Autonomous Agents and Multiagent Systems. Springer, Cham, 2017.
- Lin, Kaixiang, et al. "Efficient large-scale fleet management via multi-agent deep reinforcement learning." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.
- Gu, Shangding, et al. "Multi-agent constrained policy optimisation." arXiv preprint arXiv:2110.02793 (2021).
- Kortvelesy, Ryan, Steven Morad, and Amanda Prorok. "Permutation-Invariant Set Autoencoders with Fixed-Size Embeddings for Multi-Agent Learning." arXiv preprint arXiv:2302.12826 (2023).
- Jiang, Jiechuan, et al. "Graph convolutional reinforcement learning." arXiv preprint arXiv:1810.09202 (2018).
- Dong, Jiqian, et al. "A DRL-based Multiagent Cooperative Control Framework for CAV Networks: a Graphic Convolution Q Network." arXiv preprint arXiv:2010.05437 (2020).
- Pan, Ling, et al. "Plan better amid conservatism: Offline multi-agent reinforcement learning with actor rectification." International Conference on Machine Learning. PMLR, 2022.
- Yang, Yiqin, et al. "Believe what you see: Implicit constraint approach for offline multi-agent reinforcement learning." Advances in Neural Information Processing Systems 34 (2021): 10299-10312.
- Guo, Xudong, Daming Shi, and Wenhui Fan. "Scalable Communication for Multi-Agent Reinforcement Learning via Transformer-Based Email Mechanism." arXiv preprint arXiv:2301.01919 (2023).
- Qi, Shuhan, et al. "Cascaded Attention: Adaptive and Gated Graph Attention Network for Multiagent Reinforcement Learning." IEEE Transactions on Neural Networks and Learning Systems (2022).
- Wang, Hongwei, et al. "Multi-Agent Imitation Learning with Copulas." arXiv preprint arXiv:2107.04750 (2021).
- Peng, Bei, et al. "Facmac: Factored multi-agent centralised policy gradients." Advances in Neural Information Processing Systems 34 (2021): 12208-12221.
- Li, Meng, et al. "Enhancing Cooperation of Vehicle Merging Control in Heavy Traffic Using Communication-Based Soft Actor-Critic Algorithm." IEEE Transactions on Intelligent Transportation Systems (2022).
- Zhang, Jiawei, et al. "Multi-Agent DRL-Based Lane Change With Right-of-Way Collaboration Awareness." IEEE Transactions on Intelligent Transportation Systems (2022).
- self-play: Tang, Yichuan. "Towards learning multi-agent negotiations via self-play." Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 2019.
- Amores, Jaume. "Multiple instance classification: Review, taxonomy and comparative study." Artificial intelligence 201 (2013): 81-105.
- Wang, Liyuan, et al. "A Comprehensive Survey of Continual Learning: Theory, Method and Application." arXiv preprint arXiv:2302.00487 (2023).
- Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.
- Bai, Yuntao, et al. "Constitutional AI: Harmlessness from AI Feedback." arXiv preprint arXiv:2212.08073 (2022).
- Huang, Shaohan, et al. "Language is not all you need: Aligning perception with language models." arXiv preprint arXiv:2302.14045 (2023).
- Zhuang, Weiming, Chen Chen, and Lingjuan Lyu. "When foundation model meets federated learning: Motivations, challenges, and future directions." arXiv preprint arXiv:2306.15546 (2023).
- Moor, Michael, et al. "Foundation models for generalist medical artificial intelligence." Nature 616.7956 (2023): 259-265.
- Zhang, Jifan, et al. "LabelBench: A Comprehensive Framework for Benchmarking Label-Efficient Learning." arXiv preprint arXiv:2306.09910 (2023).
- Chen, Hao, et al. "SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised Learning." arXiv preprint arXiv:2301.10921 (2023).
- Wang, Yidong, et al. "Freematch: Self-adaptive thresholding for semi-supervised learning." arXiv preprint arXiv:2205.07246 (2022).
- Zhang, Bowen, et al. "Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling." Advances in Neural Information Processing Systems 34 (2021): 18408-18419.
- Sohn, Kihyuk, et al. "Fixmatch: Simplifying semi-supervised learning with consistency and confidence." Advances in neural information processing systems 33 (2020): 596-608.
- Ali, Mansoor, Gilberto Ochoa-Ruiz, and Sharib Ali. "A semi-supervised Teacher-Student framework for surgical tool detection and localization." arXiv preprint arXiv:2208.09926 (2022).
- Li, Yanwei, et al. "Fully convolutional networks for panoptic segmentation with point-based supervision." IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).
- Shen, Yunhang, et al. "Toward joint thing-and-stuff mining for weakly supervised panoptic segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
- Kirillov, Alexander, et al. "Panoptic feature pyramid networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
- Li, Qizhu, Anurag Arnab, and Philip HS Torr. "Weakly-and semi-supervised panoptic segmentation." Proceedings of the European conference on computer vision (ECCV). 2018.
- Kirillov, Alexander, et al. "Panoptic segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
- Chai, Shang, Liansheng Zhuang, and Fengying Yan. "LayoutDM: Transformer-based Diffusion Model for Layout Generation." arXiv preprint arXiv:2305.02567 (2023).
- Bao, Fan, et al. "All are Worth Words: a ViT Backbone for Score-based Diffusion Models." arXiv preprint arXiv:2209.12152 (2022).
- You, Zebin, et al. "Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels." arXiv preprint arXiv:2302.10586 (2023).
- Bansal, Arpit, et al. "Cold diffusion: Inverting arbitrary image transforms without noise." arXiv preprint arXiv:2208.09392 (2022).
- Sohl-Dickstein, Jascha, et al. "Deep unsupervised learning using nonequilibrium thermodynamics." International Conference on Machine Learning. PMLR, 2015.
- Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 6840-6851.
- Song, Jiaming, Chenlin Meng, and Stefano Ermon. "Denoising diffusion implicit models." arXiv preprint arXiv:2010.02502 (2020).
- Nichol, Alexander Quinn, and Prafulla Dhariwal. "Improved denoising diffusion probabilistic models." International Conference on Machine Learning. PMLR, 2021.
- Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in Neural Information Processing Systems 34 (2021): 8780-8794.
- Ho, Jonathan, et al. "Cascaded Diffusion Models for High Fidelity Image Generation." J. Mach. Learn. Res. 23 (2022): 47-1.
- Saseendran, Amrutha, Kathrin Skubch, and Margret Keuper. "Multi-Class Multi-Instance Count Conditioned Adversarial Image Generation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
- Sylvain, Tristan, et al. "Object-centric image generation from layouts." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. No. 3. 2021.
- Koturwar, Saiprasad, Soma Shiraishi, and Kota Iwamoto. "Robust multi-object detection based on data augmentation with realistic image synthesis for point-of-sale automation." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01. 2019.
- Hinz, Tobias, Stefan Heinrich, and Stefan Wermter. "Generating multiple objects at spatially distinct locations." arXiv preprint arXiv:1901.00686 (2019).
- Rao, Yongming, et al. "Dynamicvit: Efficient vision transformers with dynamic token sparsification." Advances in neural information processing systems 34 (2021): 13937-13949.
- Tzeng, Eric, et al. "Adversarial discriminative domain adaptation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The journal of machine learning research 17.1 (2016): 2096-2030.
- Faghri, Fartash, et al. "Reinforce Data, Multiply Impact: Improved Model Accuracy and Robustness with Dataset Reinforcement." arXiv preprint arXiv:2303.08983 (2023).
- (MAML): Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." International Conference on Machine Learning. PMLR, 2017.
- (Reptile): Nichol, Alex, Joshua Achiam, and John Schulman. "On first-order meta-learning algorithms." arXiv preprint arXiv:1803.02999 (2018).
- PEARL: Rakelly, Kate, et al. "Efficient off-policy meta-reinforcement learning via probabilistic context variables." International conference on machine learning. PMLR, 2019.
- MAML++: Antoniou, Antreas, Harrison Edwards, and Amos Storkey. "How to train your MAML." arXiv preprint arXiv:1810.09502 (2018).
- MQL: Fakoor, Rasool, et al. "Meta-q-learning." arXiv preprint arXiv:1910.00125 (2019).
- Parisotto, Emilio, et al. "Concurrent meta reinforcement learning." arXiv preprint arXiv:1903.02710 (2019).
- Chen, Long, et al. "Multiagent Meta-Reinforcement Learning for Adaptive Multipath Routing Optimization." IEEE Transactions on Neural Networks and Learning Systems (2021).
- Munir, Md Shirajum, et al. "Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable Edge Computing Systems." IEEE Transactions on Network and Service Management (2021).
- Gupta, Abhinav, Angeliki Lazaridou, and Marc Lanctot. "Meta Learning for Multi-agent Communication." Learning to Learn-Workshop at ICLR 2021. 2021.
- Mitchell, Eric, et al. "Offline Meta-Reinforcement Learning with Advantage Weighting." arXiv preprint arXiv:2008.06043 (2020).
- Li, Lanqing, Rui Yang, and Dijun Luo. "FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance Metric Learning and Behavior Regularization." arXiv preprint arXiv:2010.01112 (2020).
- Duan, Yan, et al. "One-shot imitation learning." arXiv preprint arXiv:1703.07326 (2017).
- James, Stephen, Michael Bloesch, and Andrew J. Davison. "Task-embedded control networks for few-shot imitation learning." Conference on Robot Learning. PMLR, 2018.
- Jaafra, Yesmina, et al. "Meta-Reinforcement Learning for Adaptive Autonomous Driving." (2019)
- Ye, Fei, et al. "Meta Reinforcement Learning-Based Lane Change Strategy for Autonomous Vehicles." arXiv preprint arXiv:2008.12451 (2020).
- Hu, Ye, et al. "Distributed multi-agent meta learning for trajectory design in wireless drone networks." IEEE Journal on Selected Areas in Communications (2021).
- Vázquez-Canteli, José R., et al. "Citylearn v1. 0: An openai gym environment for demand response with deep reinforcement learning." Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. 2019.
- Zhang, Huiliang, Di Wu, and Benoit Boulet. "MetaEMS: A Meta Reinforcement Learning-based Control Framework for Building Energy Management System." arXiv preprint arXiv:2210.12590 (2022).
- Z. Nagy, G. Henze, S. Dey et al., Ten questions concerning reinforcement learning for building energy management, Building and Environment (2023), doi: https://doi.org/10.1016/j.buildenv.2023.110435.
- Cao, Di, et al. "A multi-agent deep reinforcement learning based voltage regulation using coordinated PV inverters." IEEE Transactions on Power Systems 35.5 (2020): 4120-4123.
- Wang, Minrui, et al. "Stabilizing Voltage in Power Distribution Networks via Multi-Agent Reinforcement Learning with Transformer." arXiv preprint arXiv:2206.03721 (2022).
- Gao, Yuanqi, Wei Wang, and Nanpeng Yu. "Consensus multi-agent reinforcement learning for volt-var control in power distribution networks." IEEE Transactions on Smart Grid 12.4 (2021): 3594-3604.
- Wang, Jianhong, et al. "Multi-agent reinforcement learning for active voltage control on power distribution networks." Advances in Neural Information Processing Systems 34 (2021): 3271-3284.
- Zhang, Qianzhi, et al. "Multi-agent safe policy learning for power management of networked microgrids." IEEE Transactions on Smart Grid 12.2 (2020): 1048-1062.
- Qiu, Dawei, et al. "Mean-Field Multi-Agent Reinforcement Learning for Peer-to-Peer Multi-Energy Trading." IEEE Transactions on Power Systems (2022).
- Chen, Tianyi, et al. "Peer-to-peer energy trading and energy conversion in interconnected multi-energy microgrids using multi-agent deep reinforcement learning." IEEE Transactions on Smart Grid 13.1 (2021): 715-727.
- Ye, Yujian, et al. "A scalable privacy-preserving multi-agent deep reinforcement learning approach for large-scale peer-to-peer transactive energy trading." IEEE transactions on smart grid 12.6 (2021): 5185-5200.
- Meinecke, Steffen, et al. "Simbench—a benchmark dataset of electric power systems to compare innovative solutions based on power flow analysis." Energies 13.12 (2020): 3290.
- Qin, Zhaoming, et al. "Privacy preserving load control of residential microgrid via deep reinforcement learning." IEEE Transactions on Smart Grid 12.5 (2021): 4079-4089.
- Dang, Fengying, et al. "YOLOWeeds: A novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems." Computers and Electronics in Agriculture 205 (2023): 107655.
- Steininger, Daniel, et al. "The CropAndWeed Dataset: A Multi-Modal Learning Approach for Efficient Crop and Weed Manipulation." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2023.
- Rahman, Abdur, Yuzhen Lu, and Haifeng Wang. "Performance Evaluation of Deep Learning Object Detectors for Weed Detection for Cotton." Smart Agricultural Technology (2022): 100126.
- Du, Yayun, et al. "Deep-cnn based robotic multi-class under-canopy weed control in precision farming." 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.
- Chen, Dong, et al. "Performance evaluation of deep transfer learning on multi-class identification of common weed species in cotton production systems." Computers and Electronics in Agriculture 198 (2022): 107091.
- Dang, Fengying, et al. "DeepCottonWeeds (DCW): A Novel Benchmark of YOLO Object Detectors for Weed Detection in Cotton Production Systems." 2022 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2022.
- Paymode, Ananda S., and Vandana B. Malode. "Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG." Artificial Intelligence in Agriculture 6 (2022): 23-33.
- Li, Kangshun, et al. "A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5." Computers and Electronics in Agriculture 204 (2023): 107534.
- Siddique, Abubakar, Amy Tabb, and Henry Medeiros. "Self-supervised Learning for Panoptic Segmentation of Multiple Fruit Flower Species." arXiv preprint arXiv:2209.04618 (2022).
- Roggiolani, Gianmarco, et al. "Hierarchical Approach for Joint Semantic, Plant Instance, and Leaf Instance Segmentation in the Agricultural Domain." arXiv preprint arXiv:2210.07879 (2022).
- Please refer to Awesome GANs in Agriculture
- Please refer to Label-efficient_in_Agriculture
- Trabucco, Brandon, et al. "Effective Data Augmentation With Diffusion Models." arXiv preprint arXiv:2302.07944 (2023).
- [Survey] Lu, Yuzhen, et al. "Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review." Computers and Electronics in Agriculture 200 (2022): 107208.
- [Survey] Xu, Mingle, et al. "A Comprehensive Survey of Image Augmentation Techniques for Deep Learning." arXiv preprint arXiv:2205.01491 (2022).
- Lee, Hyo-Jun, et al. "MSENet: Marbling score estimation network for automated assessment of Korean beef." Meat Science 188 (2022): 108784.
- Hu, Chengsong, et al. "Algorithm and System Development for Robotic Micro-Volume Herbicide Spray Towards Precision Weed Management." IEEE Robotics and Automation Letters 7.4 (2022): 11633-11640.
- Liu, Wenbo, et al. "Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces." Nature communications 13.1 (2022): 1-14.
- Xiao, Xuesu, et al. "Learning Model Predictive Controllers with Real-Time Attention for Real-World Navigation." arXiv preprint arXiv:2209.10780 (2022).
- Gasoto, Renato, et al. "A validated physical model for real-time simulation of soft robotic snakes." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.
- Liu, Xuan, et al. "Learning to locomote with artificial neural-network and cpg-based control in a soft snake robot." 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.
- Liu, Xuan, Cagdas Onal, and Jie Fu. "Reinforcement Learning of a CPG-regulated Locomotion Controller for a Soft Snake Robot." arXiv preprint arXiv:2207.04899 (2022).
- Ji, Guanglin, et al. "Towards Safe Control of Continuum Manipulator Using Shielded Multiagent Reinforcement Learning." IEEE Robotics and Automation Letters 6.4 (2021): 7461-7468.
- Li, Guanda, Jun Shintake, and Mitsuhiro Hayashibe. "Deep Reinforcement Learning Framework for Underwater Locomotion of Soft Robot." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.
- Centurelli, Andrea, et al. "Closed-loop Dynamic Control of a Soft Manipulator using Deep Reinforcement Learning." IEEE Robotics and Automation Letters 7.2 (2022): 4741-4748.
- [Esemble] Du, Xinqi, et al. "A Contrastive-Enhanced Ensemble Framework for Efficient Multi-Agent Reinforcement Learning." Expert Systems with Applications (2024): 123158.
- [Esemble] Lan, Qingfeng, et al. "Maxmin q-learning: Controlling the estimation bias of q-learning." arXiv preprint arXiv:2002.06487 (2020).
- [Esemble] Chen, Xinyue, et al. "Randomized ensembled double q-learning: Learning fast without a model." arXiv preprint arXiv:2101.05982 (2021).
- [Esemble] Hiraoka, Takuya, et al. "Dropout Q-Functions for Doubly Efficient Reinforcement Learning." arXiv preprint arXiv:2110.02034 (2021).
- Portelas, Rémy, et al. "Automatic curriculum learning for deep rl: A short survey." arXiv preprint arXiv:2003.04664 (2020).
- Chen, Dong, et al. "Deep multi-agent reinforcement learning for highway on-ramp merging in mixed traffic." arXiv preprint arXiv:2105.05701 (2021).
- Liu, Xuan, et al. "Learning to locomote with artificial neural-network and cpg-based control in a soft snake robot." 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.
- Zeng, Yilei, et al. "Human Decision Makings on Curriculum Reinforcement Learning with Difficulty Adjustment." arXiv preprint arXiv:2208.02932 (2022).
- Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "Simcse: Simple contrastive learning of sentence embeddings." arXiv preprint arXiv:2104.08821 (2021).
- Du, Xinqi, et al. "A Contrastive-Enhanced Ensemble Framework for Efficient Multi-Agent Reinforcement Learning." Expert Systems with Applications (2024): 123158.
- Zhou,Shumin, et al. ""Auxiliary Task-based Deep Reinforcement Learning for Quantum Control"", arXiv preprint arXiv:2302.14312 (2023).
- Devlin, Sam, et al. "Potential-based difference rewards for multiagent reinforcement learning." Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. 2014.
- Kortvelesy, Ryan, Steven Morad, and Amanda Prorok. "Permutation-Invariant Set Autoencoders with Fixed-Size Embeddings for Multi-Agent Learning." arXiv preprint arXiv:2302.12826 (2023).
- Chen, Wubing. "Learning Multi-intersection Traffic Signal Control via Coevolutionary Multi-Agent Reinforcement Learning." (2023).
- Tao, Ran, et al. "Optimizing crop management with reinforcement learning and imitation learning." arXiv preprint arXiv:2209.09991 (2022).
- Steininger, Daniel, et al. "The CropAndWeed Dataset: A Multi-Modal Learning Approach for Efficient Crop and Weed Manipulation." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2023.
- Das, Lokesh Chandra, and Myounggyu Won. "Saint-acc: Safety-aware intelligent adaptive cruise control for autonomous vehicles using deep reinforcement learning." International Conference on Machine Learning. PMLR, 2021.
- Li, Yuecheng, Hongwen He, Amir Khajepour, Yong Chen, Weiwei Huo, and Hao Wang. "Deep reinforcement learning for intelligent energy management systems of hybrid-electric powertrains: Recent advances, open issues, and prospects." IEEE Transactions on Transportation Electrification (2024).