Skip to content

keras implementation and simple application of IOPLIN model

License

Notifications You must be signed in to change notification settings

DearCaat/IOPLIN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IOPLIN

Update:

This repo is the official implementation of "Iteratively Optimized Patch Label Inference Network for Automatic Pavement Disease Detection" based on Keras and TensorFlow 1, and IOPLIN has published in: IEEE Transactions on Intelligent Transportation Systems. The source code is placed at /ioplin, the script is placed at /script, and the required mini dataset should place at /miniset.

For more details of the pavement dataset CQU-BPDD used in paper, please refer to CQU-BPDD. (Note: CQU-BPDD can be only used in the uncommercial case and is licensed under CC BY-NC-SA 4.0.)

Installation

Requirements (necessary)

  • python <= 3.7.9
  • Keras == 2.2.4 / TensorFlow <= 1.15.0
  • keras_applications >= 1.0.7
  • scikit-image
  • opencv-python
  • efficientnet <= 0.0.3

Installing from the source

$ python setup.py install

Examples

  • Initializing the model:
# models can be build with Keras

import ioplin

model = ioplin.init_model()  
  • Loading the pre-trained weights:
import ioplin

model = ioplin.load_model('path/to/model.h5')
  • Predicting:
import ioplin

pre = ioplin.predict(model,data)
  • Pretrain and train:
import ioplin

model = ioplin.pretrain(model,data_x,data_y)

model = ioplin.train(model,data_x,data_y)

Script

Simple application script of IOPLIN, and the required dataset and default model of IOPLIN can be downloaded from Google Drive

Pretrain

$ python pretrain.py --batch_size=32 --epoch=10

Train

$ python train.py --batch_size=32 --epoch=10 --path_pretrain_model=path/pretrain_model.h5

Predict

If you want to use the trained IOPLIN model to predict data, you should download the model file and enter:

$ python predict.py --path_model=path/trained_model.h5 --positive_index=0 

If you want to use the IOPLIN model trained by yourself to predict data, you only need enter:

$ python predict.py --path_model=path/your_model.h5

About

keras implementation and simple application of IOPLIN model

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages