Skip to content

DankoZhang/LLM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 

Repository files navigation

LLM

本项目实现LLM微调,包括ChatGLM-6B+LoRA、ChatGLM2-6B+LoRA、ChatGLM-6B+LoRA+Accelerate+Deepspeed等方案。

一、ChatGLM-6B+LoRA

1、环境配置:以下所有安装包的版本都是推荐,可按实际情况自行调整

  • transformers==4.30.2

  • datasets==2.10.1(若报错,安装最新版本即可)

  • cpm_kernels==1.0.11

  • torch==1.13.0+cu116

  • peft==0.4.0

如果启用load_in_8bit,则还需要安装accelerate、bitsandbytes、scipy、tensorboardX

  • accelerate==0.21.0

  • bitsandbytes==0.41.0

  • scipy==1.11.1

  • tensorboardX==2.6.1

2、启动训练:

  • 数据并行:
CUDA_VISIBLE_DEVICES=1,2 torchrun --nproc_per_node=2 train.py --train_args_file ./conf/chatglm_6b_lora.json --model_name_or_path ../../chatglm-6b-model/ --data_path ./data/AdvertiseGen/train.jsonl --max_input_length 128 --max_output_length 256
  • 模型(流水线)并行:
CUDA_VISIBLE_DEVICES=1,2 python train.py --train_args_file ./conf/chatglm_6b_lora.json --model_name_or_path ../../chatglm-6b-model/ --data_path ./data/AdvertiseGen/train.jsonl --max_input_length 128 --max_output_length 256 --int8

3、启动推理:

CUDA_VISIBLE_DEVICES=1 python inference.py --model_name_or_path ../../chatglm-6b-model/ --lora_checkpoint ./output/adgen-chatglm-6b-lora/

二、ChatGLM2-6B+LoRA

1、环境配置:以下所有安装包的版本都是推荐,可按实际情况自行调整

  • transformers==4.30.2

  • datasets==2.10.1(若报错,安装最新版本即可)

  • cpm_kernels==1.0.11

  • torch==1.13.0+cu116

  • peft==0.4.0

如果启用load_in_8bit,则还需要安装accelerate、bitsandbytes、scipy、tensorboardX

  • accelerate==0.21.0

  • bitsandbytes==0.41.0

  • scipy==1.11.1

  • tensorboardX==2.6.1

2、启动训练:

  • 数据并行:
CUDA_VISIBLE_DEVICES=1,2 torchrun --nproc_per_node=2 train.py --train_args_file ./conf/chatglm2_6b_lora.json --model_name_or_path ../../chatglm2-6b-model/ --data_path ./data/AdvertiseGen/train.jsonl --max_input_length 128 --max_output_length 256
  • 模型(流水线)并行:
CUDA_VISIBLE_DEVICES=1,2 python train.py --train_args_file ./conf/chatglm2_6b_lora.json --model_name_or_path ../../chatglm2-6b-model/ --data_path ./data/AdvertiseGen/train.jsonl --max_input_length 128 --max_output_length 256 --int8

3、启动推理:

CUDA_VISIBLE_DEVICES=1 python inference.py --model_name_or_path ../../chatglm2-6b-model/ --lora_checkpoint ./output/adgen-chatglm2-6b-lora/

4、备注:

  • 采用transformers.Trainer框架进行训练时,内部已经实现数据并行策略,因此不需要做类似DDP、Accelerate等框架的封装工作。另外,保存模型调用的save_pretrained方法,会自动保存主进程的模型,因此也不用进行是否是主进程的判断;
  • model.chat()方法中,max_length指的是输入+输出的长度,详见model.chat()方法中的max_length参数

三、ChatGLM-6B+LoRA+Accelerate+Deepspeed

1、环境配置:

2、启动训练:

accelerate launch --config_file ./conf/accelerate_config.yaml train.py

3、启动推理:

CUDA_VISIBLE_DEVICES=1 python inference.py

4、备注:

  • 加载模型及源码修改的注意事项,同样参考通俗易懂的LLM
  • 若模型采用ChatGLM2-6B,则参考./chatglm2-ft-lora/train.py line148,对tokenize进行修改即可。

About

LLM训练

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages