Skip to content

DHI/tidepredictor

Repository files navigation

tidepredictor: Predict tides with Python

Dependencies

Predict the tides for a given location.

Contact: Ole Svenstrup Petersen

Usage:

$ tidepredictor [OPTIONS]

Options:

  • --lon FLOAT: Longitude [required]
  • --lat FLOAT: Latitude [required]
  • -s, --start [%Y-%m-%d|%Y-%m-%dT%H:%M:%S|%Y-%m-%d %H:%M:%S]: Start date [required]
  • -e, --end [%Y-%m-%d|%Y-%m-%dT%H:%M:%S|%Y-%m-%d %H:%M:%S]: End date [required]
  • -i, --interval INTEGER: Interval in minutes [default: 30]
  • -o, --output PATH: Output file, default is stdout
  • --format [csv|json]: Output format [default: csv]
  • --type [level|current]: Type of prediction, level or u,v [default: level]
  • --install-completion: Install completion for the current shell.
  • --show-completion: Show completion for the current shell, to copy it or customize the installation.
  • --help: Show this message and exit.

Tidal constituents

Code
import polars as pl
from utide._ut_constants import ut_constants

used_consts = "Q1 MF P1 K1 MM O1 M2 S2 M4 MN4 MS4 N2 K2".split()

consts = (
    pl.DataFrame(ut_constants["const"])
    .select("name", pl.col("freq").alias("freq_cph"))
    .filter(pl.col("name").is_in(used_consts))
    .with_columns((1 / pl.col("freq_cph")).alias("period_h"))
    .sort("period_h", descending=True)
)

with pl.Config(set_float_precision=4):
    print(consts.head(10))
name freq_cph period_h
MM 0.001512 661.309268
MF 0.00305 327.858984
Q1 0.037219 26.868357
O1 0.038731 25.819342
P1 0.041553 24.06589
K1 0.041781 23.93447
N2 0.078999 12.658348
M2 0.080511 12.420601
S2 0.083333 12.0
K2 0.083561 11.967235