Implementation of Regularized Best-of-N (RBoN).
The code is tested on Ubuntu 20.04 using Python 3.8 and CUDA 11.0 (Docker image nvidia/cuda:11.0.3-cudnn8-devel-ubuntu20.04).
git clone [email protected]:CyberAgentAILab/regularized-bon
cd regularized-bon
pip install -r requirements.txt
Running RBoN takes multiple steps.
- First you generate a set of responses using sample.sh. We use the same set of samples generated for all the algorithms for fair comparison.
- Compute Wasserstein distance and KL divergence using compute_wd.sh and compute_logprob.sh.
- Compute the reward of the responses.
- Run mbr/compute_rbon.py to compute RBoN-WD and RBoN-KL.
You get the CSV file in the results/ directory.
By default, it runs using openai-community/gpt2. Add -m [MODEL NAME IN HUGGINGFACE HUB]
to change the language model.
./experiments/sample.sh -d alpaca -s [NUMBER OF SAMPLES]
./experiments/compute_wd.sh -d alpaca -s [NUMBER OF SAMPLES]
./experiments/compute_logprob.sh -d alpaca -s [NUMBER OF SAMPLES]
./experiments/compute_reward.sh -d alpaca -s [NUMBER OF SAMPLES] -i stanfordnlp/SteamSHP-flan-t5-large
./experiments/compute_reward.sh -d alpaca -s [NUMBER OF SAMPLES] -i OpenAssistant/reward-model-deberta-v3-large-v2
python3 mbr/compute_rbon.py --dataset alpaca --ncandidates [NUMBER OF SAMPLES]
Jinnai, Y., Morimura, T., Ariu, K., and Abe, K. Regularized Best-of-N Sampling to Mitigate Reward Hacking for Language Model Alignment. ICML 2024 Workshop on Models of Human Feedback for AI Alignment, 2024.
Bibtex:
@inproceedings{
jinnai2024regularized,
title={Regularized Best-of-N Sampling to Mitigate Reward Hacking for Language Model Alignment},
author={Yuu Jinnai and Tetsuro Morimura and Kaito Ariu and Kenshi Abe},
booktitle={ICML 2024 Workshop on Models of Human Feedback for AI Alignment},
year={2024},
url={https://openreview.net/forum?id=ewRlZPAReR}
}
For any questions, feel free to raise an issue or contact me at [email protected].