Skip to content

CZ-TAO12/CasDO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CasDO

Paper: Information Cascade Popularity Prediction via Probabilistic Diffusion

Requirements

The code was tested with python 3.7, pyorch-gpu 1.10, cudatookkit 10.2, and cudnn 7.6.5. Install the dependencies via Anaconda:

# create virtual environment
conda create --name CasDO python=3.7 cudatoolkit=10.2 cudnn=7.6.5

# activate environment
conda activate CasDO

# install other requirements
pip install -r requirements.txt

Run the code

cd ./CasDO

# generate information cascades
python gene_cas.py --input=./dataset/twitter/

# generate cascade graph and global graph embeddings 
python gene_emb.py --input=./dataset/twitter/

# run CasDO model
python run_model.py --input=./dataset/twitter/

More running options are described in the codes, e.g., --input=./dataset/twitter/

Datasets

Datasets download link: Google Drive or Baidu Drive (password: 1msd).

The datasets we used in the paper are come from:

Contact

For any questions please open an issue or drop an email to: [email protected]

Releases

No releases published

Packages

No packages published

Languages