Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add lrec script #14

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 96 additions & 0 deletions examples/ft_lrec.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
import os
import sys
sys.path.append(os.path.abspath('.'))

# from src.xllm.cli.train import cli_run_train
from src.xllm.experiments import Experiment
from src.xllm.core.config import Config
from src.xllm.datasets import GeneralDataset
from src.xllm.collators.completion import CompletionCollator

from transformers import AutoTokenizer
from datasets import load_dataset


def prepare_data(dataset):
data = list()

for sample in dataset:
data.append({
"text": (
f"[INST] Réponds à la question suivante en t'appuyant exclusivement sur le document fourni:"
f" {sample['question']} documents: {' '.join([doc['source_text'] for doc in sample['context']]).strip()} [/INST]"
f"123target: {sample['answer'].strip()} </s>"
)
})
return data


if __name__ == "__main__":

dataset = load_dataset("LsTam/cquae_under1024", token='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')
train_dataset = GeneralDataset(data=prepare_data(dataset['train']), separator="123target: ")
eval_dataset = GeneralDataset(data=prepare_data(dataset['eval']), separator="123target: ")



tok = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
tok.pad_token = tok.eos_token
tok.padding_side = 'right'
mistral_collator = CompletionCollator(
tokenizer=tok,
max_length=1024,
separator=''
)

config = Config(
# Data
# train_local_path_to_data = "/home/louis/data_llm/cqua_v2_train.json", # Local path to the training data file.
# eval_local_path_to_data = "/home/louis/data_llm/cqua_v2_eval.json", # Local path to the evaluation data file.
# collator_key="completion",
# tokenizer_padding_side = 'right',
# tokenizer_name_or_path = "mistralai/Mistral-7B-Instruct-v0.1",
# dataset_key = "input_output",

output_dir = "/home/louis/run_name",

model_name_or_path="mistralai/Mistral-7B-Instruct-v0.1",
use_gradient_checkpointing=True,
stabilize=True,
use_flash_attention_2=True,
load_in_4bit=True, # change to 8 after testing
prepare_model_for_kbit_training=True,
apply_lora=True,
# one step is one batch
warmup_steps=5,
num_train_epochs=1,
# max_steps=250, # if specify don't care about number of epochs
logging_steps=1,
save_steps=25,
save_total_limit=3,

per_device_train_batch_size=2,
gradient_accumulation_steps=32,
max_length=1024, #2048,
# device_map={'':0},

# tokenizer_padding_side="right", # good for llama2

push_to_hub=True,
hub_private_repo=True,
hub_model_id="LsTam/mistral-xllm-7B-LoRA-cquae_v2_under1024",

# W&B
# TODO make w&b offline
report_to_wandb=False,
# wandb_project="xllm-demo",
# wandb_entity="mistral-xllm-2",
)

experiment = Experiment(config=config, train_dataset=train_dataset, eval_dataset=eval_dataset, collator=mistral_collator)

experiment.build()

experiment.run()

# cli_run_train(config_cls=Config, train_dataset=train_dataset, eval_dataset=eval_dataset)
Loading