ColabReaction: Accelerating Transition State Searches with Machine Learning Potentials on Google Colaboratory
This repository contains a Google Colab notebook for transition state (TS) search using the Direct MaxFlux (DMF) method and ML potentials (UMA).
- Click the Colab link above
- Upload your input files (e.g.
reactant.xyz,product.xyz) - Follow the notebook cells
Although we recommend running this notebook on Google Colaboratory, it can also be installed and executed in a local computing environment. The procedure described below was tested on a standalone local server running Fedora 40 (conda 25.7.0) and on a PC cluster managed by the Torque job scheduler running Rocky Linux 8.9 (conda 25.3.1). The installation was performed using Miniconda3 for environment management. The following step-by-step instructions provide a reproducible setup for the software environment.
conda create -n colabreaction python=3.11 -y conda activate colabreaction
conda config --env --remove-key channels 2>/dev/null || true conda config --env --add channels pytorch conda config --env --add channels nvidia conda config --env --add channels conda-forge conda config --env --add channels defaults conda config --env --set channel_priority strict
conda install -y -c conda-forge python=3.11 nodejs=20 rdkit numba jupyterlab ipykernel python -m pip install --upgrade pip
python -m pip install --index-url https://download.pytorch.org/whl/cu124 torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0
python -m pip install --no-cache-dir "panel @ git+https://github.com/luvwinnie/panel@d80acae43fa3" python -m pip install --no-cache-dir "panel-3dmol @ git+https://github.com/luvwinnie/panel-3dmol.git@1a4398b66c2a"
conda install -y -c conda-forge numpy scipy ase cyipopt python -m pip install --no-cache-dir git+https://github.com/shin1koda/dmf.git
python -m pip install --no-cache-dir pyg-lib torch-scatter torch-sparse torch-cluster torch-spline-conv -f https://data.pyg.org/whl/torch-2.6.0+cu124.html python -m pip install --no-cache-dir torch-geometric
python -m pip install --no-cache-dir
"param==2.2.1" "jupyter_bokeh==4.0.5" "comm==0.2.3" "plotly==6.3.0" "py3Dmol==2.5.2"
"fairchem-core==2.3.0"
git+https://github.com/shin1koda/dmf.git
conda install -y -c conda-forge ipywidgets
python -m ipykernel install --user --name=colabreaction --display-name "Python (colabreaction)"
Before launching JupyterLab, please ensure that the file Local_ColabReaction.ipynb is placed in the working directory from which you will start JupyterLab. This ensures that all relative paths and dependencies are correctly resolved.
(run on the server): jupyter lab --no-browser --port=8888 --ip=127.0.0.1 (run on your local machine, in a web browser): Open the following URL: http://localhost:8888
(run on the server, to allocate a compute node): qsub -I -q <queue_name> -l nodes=<compute_node>:ppn=8:gpus=1,walltime=01:00:00 jupyter lab --no-browser --port=8888 --ip=127.0.0.1 (run on the server, once the compute node is allocated): ssh -J @ -L 8890:localhost:8888 @<compute_node> (run on your local machine, from a separate terminal): Open the following URL: http://localhost:8890
Note: For convenience, it is recommended to configure the LocalForward option in your ~/.ssh/config file.
If you use ColabReaction in your research, please cite the following publication:
- Karasawa, M.; Leow, C. S.; Yajima, H.; Arai, S.; Nishizaki, H.; Terada, T.; Sato H. ChemRxiv 2025. DOI: 10.26434/chemrxiv-2025-zvkqk
We also recommend citing the following references related to the underlying DMF/UMA methodology:
- Nakano, M.; Karasawa, M.; Ohmura, T.; Terada, T.; Sato, H. ChemRxiv 2025. DOI: 10.26434/chemrxiv-2025-md8k6-v2
- Koda, S.; Saito, S. Locating Transition States by Variational Reaction Path Optimization with an Energy-Derivative-Free Objective Function. J. Chem. Theory Comput. 2024, 20 (7), 2798-2811.
- Koda, S.; Saito, S. Flat-Bottom Elastic Network Model for Generating Improved Plausible Reaction Paths. J. Chem. Theory Comput 2024, 20 (16), 7176-7187.
- Koda, S.; Saito, S. Correlated Flat-Bottom Elastic Network Model for Improved Bond Rearrangement in Reaction Paths. J. Chem. Theory Comput. 2025, 21 (7), 3513-3522.
- Wood, B. M.; Dzamba, M.; Fu, X.; Gao, M.; Shuaibi, M.; Barroso-Luque, L.; Abdelmaqsoud, K.; Gharakhanyan, V.; Kitchin, J. R.; Levine, D. S.; et al. UMA: A Family of Universal Models for Atoms. arXiv preprint 2025, https://ai.meta.com/research/publications/uma-a-family-of-universal-models-for-atoms.
- Levine, D. S.; Shuaibi, M.; Spotte-Smith, E. W. C.; Taylor, M. G.; Hasyim, M. R.; Michel, K.; Batatia, I.; Csányi, G.; Dzamba, M.; Eastman, P.; et al. The Open Molecules 2025 (OMol25) Dataset, Evaluations, and Models. arXiv preprint 2025, arXiv:2505.08762. [physics.chem-ph]
- fairchem; https://github.com/facebookresearch/fairchem