-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgroupImg.py
137 lines (114 loc) · 3.45 KB
/
groupImg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/python3
#coding: utf-8
import os
import shutil
import glob
import math
import argparse
import warnings
import numpy as np
import matplotlib.image as mpimg
from PIL import Image
from tqdm import tqdm
from multiprocessing.dummy import Pool as ThreadPool
from multiprocessing import cpu_count
Image.MAX_IMAGE_PIXELS = None
warnings.simplefilter('ignore', Image.DecompressionBombWarning)
class K_means:
def __init__(self, k=3):
self.k = k
self.cluster = []
self.data = []
self.end = []
self.i = 0
self.size = False
def manhattan_distance(self,x1,x2):
s = 0.0
for i in range(len(x1)):
s += abs( float(x1[i]) - float(x2[i]) )
return s
def euclidian_distance(self,x1,x2):
s = 0.0
for i in range(len(x1)):
s += math.sqrt((float(x1[i]) - float(x2[i])) ** 2)
return s
def read_image(self,im):
if self.i >= self.k :
self.i = 0
try:
img = mpimg.imread(im)
v = [float(p)/float(img.size)*100 for p in np.histogram(img)[0]]
if self.size :
v += [img.shape[0], img.shape[1]]
self.i += 1
pbar.update(1)
return [self.i, v, im]
except:
print("Error reading ",im)
return [None,None,None]
def generate_k_means(self):
final_mean = []
for c in range(self.k):
partial_mean = []
for i in range(len(self.data[0])):
s = 0.0
t = 0
for j in range(len(self.data)):
if self.cluster[j] == c :
s += self.data[j][i]
t += 1
if t != 0 :
partial_mean.append(float(s)/float(t))
else:
partial_mean.append(float('inf'))
final_mean.append(partial_mean)
return final_mean
def generate_k_clusters(self,folder,size):
pool = ThreadPool(cpu_count())
self.size = size
result = pool.map(self.read_image, folder)
self.cluster = [r[0] for r in result if r[0]]
self.data = [r[1] for r in result if r[1]]
self.end = [r[2] for r in result if r[2]]
def rearrange_clusters(self):
acabou = False
while(acabou == False):
acabou = True
m = self.generate_k_means()
for x in range(len(self.cluster)):
dist = []
for a in range(self.k):
dist.append( self.manhattan_distance(self.data[x],m[a]) )
if self.cluster[x] != dist.index(min(dist)) :
self.cluster[x] = dist.index(min(dist))
acabou = False
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--folder", required=True, help="path to input dataset")
ap.add_argument("-k", "--kmeans", type=int, default=5, help="how many groups")
ap.add_argument("-s", "--size", default=False, action="store_true", help="use size to compare images")
ap.add_argument("-m", "--move", default=False, action="store_true", help="move instead of copy")
args = vars(ap.parse_args())
types = ('*.jpg', '*.JPG', '*.png', '*.jpeg')
imagePaths = []
for files in types:
imagePaths.extend(sorted(glob.glob(args["folder"]+files)))
if(len(imagePaths) <= 0):
print("Nenhuma imagem encontrada!")
exit()
pbar = tqdm(total=len(imagePaths))
k = K_means(args["kmeans"])
k.generate_k_clusters(imagePaths,args["size"])
k.rearrange_clusters()
folder = args["folder"]
for i in range(k.k):
os.makedirs(folder+""+'{:04}'.format(i+1))
cmd = 'cp'
if args["move"] :
cmd = 'mv'
for i in range(len(k.cluster)):
src = k.end[i]
dst = folder+"/"+'{:04}'.format(k.cluster[i]+1)+"/"
if args["move"] :
shutil.move(src, dst)
else :
shutil.copy(src, dst)