-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathLogClass.py
67 lines (52 loc) · 2.09 KB
/
LogClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
class LogisticClassifier:
def __init__(self, learning_rate=0.1, tolerance=1e-4, max_iter=1000):
# gradient descent parameters
self.learning_rate = float(learning_rate)
self.tolerance = float(tolerance)
self.max_iter = int(max_iter)
# how to construct a the design matrix
self.add_intercept = True
self.center = True
self.scale = True
self.training_loss_history = []
def _design_matrix(self, X):
if self.center:
X = X - self.means
if self.scale:
X = X / self.standard_error
if self.add_intercept:
X = np.hstack([ np.ones((X.shape[0], 1)), X])
return X
def fit_center_scale(self, X):
self.means = X.mean(axis=0)
self.standard_error = np.std(X, axis=0)
def fit(self, X, y):
self.fit_center_scale(X)
# add intercept column to the design matrix
n, k = X.shape
X = self._design_matrix(X)
# used for the convergence check
previous_loss = -float('inf')
self.converged = False
# initialize parameters
self.beta = np.zeros(k + (1 if self.add_intercept else 0))
for i in range(self.max_iter):
y_hat = sigmoid(X @ self.beta)
self.loss = np.mean(-y * np.log(y_hat) - (1-y) * np.log(1-y_hat))
# convergence check
if abs(previous_loss - self.loss) < self.tolerance:
self.converged = True
break
else:
previous_loss = self.loss
# gradient descent
residuals = (y_hat - y).reshape( (n, 1) )
gradient = (X * residuals).mean(axis=0)
self.beta -= self.learning_rate * gradient
self.iterations = i+1
def predict_proba(self, X):
# add intercept column to the design matrix
X = self._design_matrix(X)
return sigmoid(X @ self.beta)
def predict(self, X):
return (self.predict_proba(X) > 0.5).astype(int)