-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add in comp, change metric help func
- Loading branch information
Showing
2 changed files
with
193 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
from pymc3_hmm.distributions import HMMStateSeq, SwitchingProcess, broadcast_to | ||
from pymc3.distributions.dist_math import bound, logpow, factln | ||
from pymc3.distributions import draw_values, generate_samples | ||
from tests.utils import ( | ||
simulate_hmm_dist, | ||
check_metrics_for_sampling, | ||
) | ||
from pymc3_hmm.step_methods import FFBSStep, TransMatConjugateStep | ||
import pymc3 as pm | ||
import theano.tensor as tt | ||
import numpy as np | ||
import pandas as pd | ||
import patsy | ||
|
||
|
||
def CMPoisson_subset_args(self, shape, idx): | ||
return [ | ||
(broadcast_to(self.nu, shape))[idx], | ||
(broadcast_to(self.lamda, shape))[idx], | ||
] | ||
|
||
|
||
class CMPoisson(pm.Discrete): | ||
## Adapted from https://gist.github.com/dadaromeo/33e581d9e3bcbad83531b4a91a87509f | ||
subset_args = CMPoisson_subset_args | ||
|
||
def __init__(self, lamda, nu, *args, **kwargs): | ||
super(CMPoisson, self).__init__(*args, **kwargs) | ||
self.lamda = lamda | ||
self.nu = nu | ||
self.alpha = tt.power(self.lamda, 1 / self.nu) | ||
|
||
def logp(self, value): | ||
lamda = self.lamda | ||
nu = self.nu | ||
alpha = self.alpha | ||
pi = tt.constant(np.pi) | ||
|
||
log_Z = nu * alpha - ((nu - 1) / 2) * tt.log(2 * pi * alpha) - 0.5 * tt.log(nu) | ||
return bound( | ||
value * tt.log(lamda) - nu * tt.gammaln(value + 1) - log_Z, | ||
lamda > 0, | ||
nu > 0, | ||
) | ||
|
||
def _random(self, lamda, nu, size=None): | ||
size = size or 1 | ||
|
||
nu = np.atleast_1d(nu) | ||
alpha = np.atleast_1d(np.power(lamda, 1 / nu)) | ||
Z = np.exp(nu * alpha) / ((2 * np.pi * alpha) ** ((nu - 1) / 2) * np.sqrt(nu)) | ||
|
||
U = np.random.uniform(low=0, high=1, size=size) | ||
values = np.empty(size, dtype=int) | ||
|
||
for i in range(U.shape[0]): | ||
p = 1 / Z | ||
cdf = p | ||
k = 0 | ||
u = U[i] | ||
|
||
while any(u > cdf): | ||
k += 1 | ||
p = (p * lamda) / k ** nu | ||
cdf += p | ||
|
||
values[i] = k | ||
return values | ||
|
||
def random(self, point=None, size=None, repeat=None): | ||
lamda, nu = draw_values([self.lamda, self.nu], point=point) | ||
return generate_samples( | ||
self._random, lamda, nu, dist_shape=self.shape, size=size | ||
) | ||
|
||
|
||
def gen_design_matrix(N): | ||
t = pd.date_range(end=pd.to_datetime("today"), periods=N, freq="H").to_frame() | ||
t["weekday"] = t[0].dt.dayofweek | ||
t["hour"] = t[0].dt.hour | ||
t.reset_index() | ||
formula_str = " 1 + C(hour) + C(weekday)" | ||
X_df = patsy.dmatrix(formula_str, t, return_type="dataframe") | ||
return X_df.values | ||
|
||
|
||
def test_seasonality_cmp_sampling(N: int = 200, off_param=1): | ||
with np.errstate(over="warn", under="warn"): | ||
np.random.seed(2032) | ||
|
||
X_t = gen_design_matrix(N) | ||
betas_intercept = np.random.normal(np.log(3000), 1, size=1) | ||
betas_hour = np.sort(np.random.normal(0.5, 0.1, size=23)) | ||
betas_week = np.sort(np.random.normal(1, 0.1, size=6)) | ||
|
||
betas = np.concatenate([betas_intercept, betas_hour, betas_week]) | ||
eta_r = tt.exp(tt.dot(X_t, betas)) | ||
|
||
eta_d = {"lamda": eta_r, "nu": 1} | ||
|
||
cls = CMPoisson | ||
|
||
kwargs = { | ||
"N": N, | ||
"arg_dict": [eta_d], | ||
"pi_0_a": np.r_[1, 1], | ||
"Gamma": np.r_["0,2,1", [10, 1], [5, 5]], | ||
"cls": cls, | ||
} | ||
simulation, _ = simulate_hmm_dist(**kwargs) | ||
|
||
with pm.Model() as test_model: | ||
p_0_rv = pm.Dirichlet("p_0", np.r_[1, 1]) | ||
p_1_rv = pm.Dirichlet("p_1", np.r_[1, 1]) | ||
|
||
P_tt = tt.stack([p_0_rv, p_1_rv]) | ||
P_rv = pm.Deterministic("P_tt", P_tt) | ||
|
||
pi_0_tt = simulation["pi_0"] | ||
y_test = simulation["Y_t"] | ||
|
||
S_rv = HMMStateSeq("S_t", y_test.shape[0], P_rv, pi_0_tt) | ||
S_rv.tag.test_value = (y_test > 0).astype(np.int) | ||
|
||
X = gen_design_matrix(N) | ||
beta_s_intercept = pm.Normal( | ||
"beta_s_intercept", np.log(3000), 1, shape=(1,) | ||
) | ||
beta_s_hour = pm.Normal("beta_s_hour", 0.5, 0.1, shape=(23,)) | ||
beta_s_week = pm.Normal("beta_s_week", 1, 0.1, shape=(6,)) | ||
|
||
beta_s = pm.Deterministic( | ||
"beta_s", tt.concatenate([beta_s_intercept, beta_s_hour, beta_s_week]) | ||
) | ||
lamda = tt.exp(tt.dot(X, beta_s)) | ||
|
||
nu = pm.Normal("nu", 1, 0.5, shape=(1,)) | ||
|
||
Y_rv = SwitchingProcess( | ||
"Y_t", | ||
[pm.Constant.dist(0), cls.dist(lamda, nu)], | ||
S_rv, | ||
observed=y_test, | ||
) | ||
with test_model: | ||
mu_step = pm.NUTS([lamda, nu, beta_s]) | ||
ffbs = FFBSStep([S_rv]) | ||
transitions = TransMatConjugateStep([p_0_rv, p_1_rv], S_rv) | ||
steps = [ffbs, mu_step, transitions] | ||
trace_ = pm.sample(N, step=steps, return_inferencedata=True, chains=1) | ||
|
||
check_metrics_for_sampling(trace_, simulation) | ||
betas_np = np.concatenate([betas_intercept, betas_hour, betas_week]) | ||
beta_pred = trace_.posterior["beta_s"].values[0].mean(0) | ||
assert np.allclose(beta_pred, betas_np) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters